Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; : 173734, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857805

ABSTRACT

Seasonal and daily variations of gaseous emissions from naturally ventilated dairy cattle barns are important figures for the establishment of effective and specific mitigation plans. The present study aimed to measure methane (CH4) and ammonia (NH3) emissions in three naturally ventilated dairy cattle barns covering the four seasons for two consecutive years. In each barn, air samples from five indoor locations were drawn by a multipoint sampler to a photoacoustic infrared multigas monitor, along with temperature and relative humidity. Milk production data were also recorded. Results showed seasonal differences for CH4 and NH3 emissions in the three barns with no clear trends within years. Globally, diel CH4 emissions increased in the daytime with high intra-hour variability. The average hourly CH4 emissions (g h-1livestock unit-1 (LU)) varied from 8.1 to 11.2 and 6.2 to 20.3 in the dairy barn 1, from 10.1 to 31.4 and 10.9 to 22.8 in the dairy barn 2, and from 1.5 to 8.2 and 13.1 to 22.1 in the dairy barn 3, respectively, in years 1 and 2. Diel NH3 emissions highly varied within hours and increased in the daytime. The average hourly NH3 emissions (g h-1 LU-1) varied from 0.78 to 1.56 and 0.50 to 1.38 in the dairy barn 1, from 1.04 to 3.40 and from 0.93 to 1.98 in the dairy barn 2, from 0.66 to 1.32 and from 1.67 to 1.73 in the dairy barn 3, respectively, in years 1 and 2. Moreover, the emission factors of CH4 and NH3 were 309.5 and 30.6 (g day-1 LU-1), respectively, for naturally ventilated dairy cattle barns. Overall, this study provided a detailed characterization of seasonal and daily gaseous emissions variations highlighting the need for future longitudinal emission studies and identifying an opportunity to better adequate the existing mitigation strategies according to season and daytime.

2.
J Environ Manage ; 320: 115882, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35952566

ABSTRACT

Decomposition of dairy cows' excreta on housing floor leads to ammonia and greenhouse gases production, yet factors affecting total emissions have not been fully disclosed. This work aimed to assess the impact of lactation stage, feeding system and sampling time on gaseous emission potential of cow's faeces and urine in laboratory chambers systems. Individual faeces and urine were collected from two groups of four cows, at peak and post peak lactation, from three commercial farms with distinct feeding systems: total mixed ration (TMR), total mixed ration plus concentrate at robot (TMR + robot), and total mixed ration plus concentrate in automatic feeders (TMR + AF). Samples were collected before a.m. (T8h), at middle day (T12h), and before p.m. (T17h) milking. In a laboratory chambers system, faeces and urine were mixed in a ratio of 1.7:1, and ammonia and greenhouse gases emissions were monitored during 48-h. Cumulative N-N2O emissions were the highest in TMR + robot system, post peak cows and sampling time T17h. An interaction between stage of lactation and sampling time was detected for N-NH3 and N-N2O (g/kg organic soluble N) emissions. Post peak cows also produced the highest cumulative N-NH3 emissions. Overall results contribute for the identification of specific on-farm strategies to reduce gaseous emissions from cows' excreta.


Subject(s)
Ammonia , Greenhouse Gases , Animal Feed/analysis , Animals , Cattle , Dairying/methods , Diet/veterinary , Farms , Female , Lactation , Milk
3.
PeerJ ; 8: e9488, 2020.
Article in English | MEDLINE | ID: mdl-33194323

ABSTRACT

BACKGROUND: The awareness of environmental and socio-economic impacts caused by greenhouse gas emissions from the livestock sector leverages the adoption of strategies to counteract it. Feed supplements can play an important role in the reduction of the main greenhouse gas produced by ruminants-methane (CH4). In this context, this study aims to assess the effect of two biochar sources and inclusion levels on rumen fermentation parameters in vitro. METHODS: Two sources of biochar (agro-forestry residues, AFB, and potato peel, PPB) were added at two levels (5 and 10%, dry matter (DM) basis) to two basal substrates (haylage and corn silage) and incubated 24-h with rumen inocula to assess the effects on CH4 production and main rumen fermentation parameters in vitro. RESULTS: AFB and PPB were obtained at different carbonization conditions resulting in different apparent surface areas, ash content, pH at the point of zero charge (pHpzc), and elemental analysis. Relative to control (0% biochar), biochar supplementation kept unaffected total gas production and yield (mL and mL/g DM, p = 0.140 and p = 0.240, respectively) and fermentation pH (p = 0.666), increased CH4production and yield (mL and mL/g DM, respectively, p = 0.001) and ammonia-N (NH3-N, p = 0.040), and decreased total volatile fatty acids (VFA) production (p < 0.001) and H2 generated and consumed (p ≤ 0.001). Biochar sources and inclusion levels had no negative effect on most of the fermentation parameters and efficiency. Acetic:propionic acid ratio (p = 0.048) and H2 consumed (p = 0.019) were lower with AFB inclusion when compared to PPB. Biochar inclusion at 10% reduced H2 consumed (p < 0.001) and tended to reduce total gas production (p = 0.055). Total VFA production (p = 0.019), acetic acid proportion (p = 0.011) and H2 generated (p = 0.048) were the lowest with AFB supplemented at 10%, no differences being observed among the other treatments. The basal substrate affected most fermentation parameters independently of biochar source and level used. DISCUSSION: Biochar supplementation increased NH3-N content, iso-butyric, iso-valeric and valeric acid proportions, and decreased VFA production suggesting a reduced energy supply for microbial growth, higher proteolysis and deamination of substrate N, and a decrease of NH3-N incorporation into microbial protein. No interaction was found between substrate and biochar source or level on any of the parameters measured. Although AFB and PPB had different textural and compositional characteristics, their effects on the rumen fermentation parameters were similar, the only observed effects being due to AFB included at 10%. Biochar supplementation promoted CH4 production regardless of the source and inclusion level, suggesting that there may be other effects beyond biomass and temperature of production of biochar, highlighting the need to consider other characteristics to better identify the mechanism by which biochar may influence CH4 production.

SELECTION OF CITATIONS
SEARCH DETAIL
...