Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 12(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38397912

ABSTRACT

The aim of the present study was to characterize biofilms formed by Candida spp. clinical isolates (n = 19), isolated from the oral mucosa of HIV-positive patients. For characterizing the biofilms formed by several Candida sp. strains, isolated from HIV-positive patients, in terms of formed biomass, matrix composition and antifungal susceptibility profile, clinical isolates (n = 19) were collected from oral mucosa and identified. The biofilm of the samples was cultured with fluconazole (1250 mg/L), voriconazole (800 mg/L), anidulafungin (2 mg/L) or amphotericin B (2 mg/L). Afterwards, the quantification of the total biomass was performed using crystal violet assay, while the proteins and carbohydrates levels were quantified in the matrix. The results showed a predominance of C. albicans, followed by C. krusei. Around 58% of the Candida spp. biofilm had susceptibility to fluconazole and voriconazole (800 mg/L), 53% to anidulafungin and 74% to amphotericin B. C. krusei presented both the lowest and the highest biofilm matrix contents in polysaccharides and proteins. The low resistance to antifungal agents reported here was probably due to the fact that none of the participants had a prolonged exposure to these antifungals. A predominance of less virulent Candida spp. strains with low or no resistance to antifungals was observed. This can be attributed to a low fungal selective pressure. This most probably happened due to a low fungal selective pressure but also due to a good adherence to HAART therapy, which guarantees a stable and stronger immune patient response.

2.
Antibiotics (Basel) ; 12(5)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37237699

ABSTRACT

BACKGROUND: Candida albicans and non-Candida albicans Candida species (NCACs) are known to colonize and invade various tissues, including the oral mucosa. In this work, we aimed to characterize mature biofilms of several Candida spp. clinical isolates (n = 33) obtained from the oral mucosa of children, adults, and elders of Eastern Europe and South America. METHODS: Each strain was evaluated for its capacity to form biofilms in terms of total biomass using the crystal violet assay and for matrix components production (proteins and carbohydrates) using the BCA and phenol-sulfuric tests, respectively. The effect of different antifungals on biofilm formation was studied. RESULTS: in the children's group, a predominance of C. krusei (81%) was observed, while, among adults, the main species was C. albicans (59%). Most strains showed a reduced response to antimicrobial drugs when in biofilm form (p < 0.01). Moreover, it was observed that strains isolated from children produced more matrix, with higher levels of protein and polysaccharides. CONCLUSIONS: children were more likely to be infected by NCACs than adults. More importantly, these NCACs were able to form biofilms richer in matrix components. This finding is of clinical importance, particularly in pediatric care, since stronger biofilms are highly associated with antimicrobial resistance, recurrent infections, and higher therapeutic failure.

3.
J Fungi (Basel) ; 8(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35887426

ABSTRACT

Candida albicans is still the major yeast causing human fungal infections. Nevertheless, in the last decades, non-Candida albicans Candida species (NCACs) (e.g., Candida glabrata, Candida tropicalis, and Candida parapsilosis) have been increasingly linked to Candida sp. infections, mainly in immunocompromised and hospitalized patients. The escalade of antifungal resistance among Candida sp. demands broadly effective and cost-efficient therapeutic strategies to treat candidiasis. Marine environments have shown to be a rich source of a plethora of natural compounds with substantial antimicrobial bioactivities, even against resistant pathogens, such as Candida sp. This short review intends to briefly summarize the most recent marine compounds that have evidenced anti-Candida sp. activity. Here, we show that the number of compounds discovered in the last years with antifungal activity is growing. These drugs have a good potential to be used for the treatment of candidiasis, but disappointedly the reports have devoted a high focus on C. albicans, neglecting the NCACs, highlighting the need to perform outspreading studies in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL