Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Type of study
Language
Publication year range
1.
Glycobiology ; 31(10): 1378-1389, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34192330

ABSTRACT

Leishmania (L.) amazonensis is one of the species responsible for the development of cutaneous leishmaniasis in South America. After entering the vertebrate host, L. (L.) amazonensis invades mainly neutrophils, macrophages and dendritic cells. Studies have shown that gal-3 acts as a pattern recognition receptor. However, the role of this protein in the context of L. (L.) amazonensis infection remains unclear. Here, we investigated the impact of gal-3 expression on experimental infection by L. (L.) amazonensis. Our data showed that gal-3 plays a role in controlling parasite invasion, replication and the formation of endocytic vesicles. Moreover, mice with gal-3 deficiency showed an exacerbated inflammatory response. Taken together, our data shed light to a critical role of gal-3 in the host response to infection by L. (L.) amazonensis.


Subject(s)
Galectin 3/metabolism , Leishmania/metabolism , Leishmaniasis, Cutaneous/metabolism , Animals , Female , Galectin 3/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Microb Pathog ; 135: 103618, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31310832

ABSTRACT

P21 is a protein secreted by Trypanosoma cruzi (T. cruzi). Previous studies have shown a spectrum of biological activities performed by P21 such as induction of phagocytosis, leukocyte chemotaxis and inhibition of angiogenesis. However, the activity of P21 in T. cruzi infection remains unknown. Here, we reported the role of P21 in mice harboring late T. cruzi infection. Treatment with recombinant P21 protein (rP21) reduced parasite load and angiogenesis, and induced fibrosis in the cardiac tissue of infected mice. In addition, rP21 reduced the growth of epimastigotes, inhibited intracellular replication of amastigotes and modulated the parasite cell cycle. Our data suggest that P21 controls parasite replication in the host, supporting the survival of both parasite and host.


Subject(s)
Chagas Disease/immunology , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Trypanosoma cruzi/immunology , Trypanosoma cruzi/physiology , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Cell Cycle , Chagas Disease/parasitology , Chagas Disease/pathology , Disease Models, Animal , Fibrosis , Heart , Host-Parasite Interactions , Mice , Mice, Inbred BALB C , Parasite Load , Protozoan Proteins/genetics , Recombinant Proteins , Trypanosoma cruzi/genetics , Trypanosoma cruzi/pathogenicity
3.
Microb pathog, v. 135,103618, oct. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2807

ABSTRACT

P21 is a protein secreted by Trypanosoma cruzi (T. cruzi). Previous studies have shown a spectrum of biological activities performed by P21 such as induction of phagocytosis, leukocyte chemotaxis and inhibition of angiogenesis. However, the activity of P21 in T. cruzi infection remains unknown. Here, we reported the role of P21 in mice harboring late T. cruzi infection. Treatment with recombinant P21 protein (rP21) reduced parasite load and angiogenesis, and induced fibrosis in the cardiac tissue of infected mice. In addition, rP21 reduced the growth of epimastigotes, inhibited intracellular replication of amastigotes and modulated the parasite cell cycle. Our data suggest that P21 controls parasite replication in the host, supporting the survival of both parasite and host.

4.
Microb pathog ; 135: 103618, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16129

ABSTRACT

P21 is a protein secreted by Trypanosoma cruzi (T. cruzi). Previous studies have shown a spectrum of biological activities performed by P21 such as induction of phagocytosis, leukocyte chemotaxis and inhibition of angiogenesis. However, the activity of P21 in T. cruzi infection remains unknown. Here, we reported the role of P21 in mice harboring late T. cruzi infection. Treatment with recombinant P21 protein (rP21) reduced parasite load and angiogenesis, and induced fibrosis in the cardiac tissue of infected mice. In addition, rP21 reduced the growth of epimastigotes, inhibited intracellular replication of amastigotes and modulated the parasite cell cycle. Our data suggest that P21 controls parasite replication in the host, supporting the survival of both parasite and host.

5.
Article in English | MEDLINE | ID: mdl-29164071

ABSTRACT

Trypanosoma cruzi interacts with host cells, including cardiomyocytes, and induces the production of cytokines, chemokines, metalloproteinases, and glycan-binding proteins. Among the glycan-binding proteins is Galectin-3 (Gal-3), which is upregulated after T. cruzi infection. Gal-3 is a member of the lectin family with affinity for ß-galactose containing molecules; it can be found in both the nucleus and the cytoplasm and can be either membrane-associated or secreted. This lectin is involved in several immunoregulatory and parasite infection process. Here, we explored the consequences of Gal-3 deficiency during acute and chronic T. cruzi experimental infection. Our results demonstrated that lack of Gal-3 enhanced in vitro replication of intracellular parasites, increased in vivo systemic parasitaemia, and reduced leukocyte recruitment. Moreover, we observed decreased secretion of pro-inflammatory cytokines in spleen and heart of infected Gal-3 knockout mice. Lack of Gal-3 also led to elevated mast cell recruitment and fibrosis of heart tissue. In conclusion, galectin-3 expression plays a pivotal role in controlling T. cruzi infection, preventing heart damage and fibrosis.


Subject(s)
Chagas Disease/immunology , Chagas Disease/pathology , Galectin 3/immunology , Galectin 3/metabolism , Immunity, Innate/immunology , Trypanosoma cruzi/immunology , Animals , Cell Survival , Chagas Disease/parasitology , Chlorocebus aethiops , Collagen/analysis , Cytokines/metabolism , Disease Models, Animal , Fibrosis/immunology , Fibrosis/prevention & control , Galactosides , Galectin 3/genetics , Heart , Host-Parasite Interactions , Macrophages, Peritoneal/parasitology , Male , Mast Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Parasitemia , Spleen/immunology , Trypanosoma cruzi/pathogenicity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...