Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 7(5)2021 08 27.
Article in English | MEDLINE | ID: mdl-34256366

ABSTRACT

This work proposes a pixel-classification approach for vessel segmentation in x-ray angiograms. The proposal uses textural features such as anisotropic diffusion, features based on the Hessian matrix, mathematical morphology and statistics. These features are extracted from the neighborhood of each pixel. The approach also uses the ELEMENT methodology, which consists of creating a pixel-classification controlled by region-growing where the result of the classification affects further classifications of pixels. The Random Forests classifier is used to predict whether the pixel belongs to the vessel structure. The approach achieved the best accuracy in the literature (95.48%) outperforming unsupervised state-of-the-art approaches.


Subject(s)
Image Processing, Computer-Assisted , Machine Learning , Heart , X-Rays
2.
Comput Biol Med ; 87: 38-45, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28549293

ABSTRACT

This work proposes the use of Genetic Algorithms (GA) in tracing and recognizing the pericardium contour of the human heart using Computed Tomography (CT) images. We assume that each slice of the pericardium can be modelled by an ellipse, the parameters of which need to be optimally determined. An optimal ellipse would be one that closely follows the pericardium contour and, consequently, separates appropriately the epicardial and mediastinal fats of the human heart. Tracing and automatically identifying the pericardium contour aids in medical diagnosis. Usually, this process is done manually or not done at all due to the effort required. Besides, detecting the pericardium may improve previously proposed automated methodologies that separate the two types of fat associated to the human heart. Quantification of these fats provides important health risk marker information, as they are associated with the development of certain cardiovascular pathologies. Finally, we conclude that GA offers satisfiable solutions in a feasible amount of processing time.


Subject(s)
Algorithms , Automation , Pericardium/diagnostic imaging , Tomography, X-Ray Computed/methods , Adipose Tissue/diagnostic imaging , Humans
3.
Comput Biol Med ; 89: 520-529, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28318505

ABSTRACT

We propose a methodology to predict the cardiac epicardial and mediastinal fat volumes in computed tomography images using regression algorithms. The obtained results indicate that it is feasible to predict these fats with a high degree of correlation, thus alleviating the requirement for manual or automatic segmentation of both fat volumes. Instead, segmenting just one of them suffices, while the volume of the other may be predicted fairly precisely. The correlation coefficient obtained by the Rotation Forest algorithm using MLP Regressor for predicting the mediastinal fat based on the epicardial fat was 0.9876, with a relative absolute error of 14.4% and a root relative squared error of 15.7%. The best correlation coefficient obtained in the prediction of the epicardial fat based on the mediastinal was 0.9683 with a relative absolute error of 19.6% and a relative squared error of 24.9%. Moreover, we analysed the feasibility of using linear regressors, which provide an intuitive interpretation of the underlying approximations. In this case, the obtained correlation coefficient was 0.9534 for predicting the mediastinal fat based on the epicardial, with a relative absolute error of 31.6% and a root relative squared error of 30.1%. On the prediction of the epicardial fat based on the mediastinal fat, the correlation coefficient was 0.8531, with a relative absolute error of 50.43% and a root relative squared error of 52.06%. In summary, it is possible to speed up general medical analyses and some segmentation and quantification methods that are currently employed in the state-of-the-art by using this prediction approach, which consequently reduces costs and therefore enables preventive treatments that may lead to a reduction of health problems.


Subject(s)
Adipose Tissue/diagnostic imaging , Image Processing, Computer-Assisted , Machine Learning , Mediastinum/diagnostic imaging , Pericardium/diagnostic imaging , Tomography, X-Ray Computed , Female , Humans , Male
4.
Comput Methods Programs Biomed ; 123: 109-28, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26474835

ABSTRACT

The deposits of fat on the surroundings of the heart are correlated to several health risk factors such as atherosclerosis, carotid stiffness, coronary artery calcification, atrial fibrillation and many others. These deposits vary unrelated to obesity, which reinforces its direct segmentation for further quantification. However, manual segmentation of these fats has not been widely deployed in clinical practice due to the required human workload and consequential high cost of physicians and technicians. In this work, we propose a unified method for an autonomous segmentation and quantification of two types of cardiac fats. The segmented fats are termed epicardial and mediastinal, and stand apart from each other by the pericardium. Much effort was devoted to achieve minimal user intervention. The proposed methodology mainly comprises registration and classification algorithms to perform the desired segmentation. We compare the performance of several classification algorithms on this task, including neural networks, probabilistic models and decision tree algorithms. Experimental results of the proposed methodology have shown that the mean accuracy regarding both epicardial and mediastinal fats is 98.5% (99.5% if the features are normalized), with a mean true positive rate of 98.0%. In average, the Dice similarity index was equal to 97.6%.


Subject(s)
Adipose Tissue/diagnostic imaging , Algorithms , Heart/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Coronary Artery Disease/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Imaging, Three-Dimensional/statistics & numerical data , Mediastinum/diagnostic imaging , Medical Informatics , Pericardium/diagnostic imaging , Tomography, X-Ray Computed/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...