Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 11(12): 506, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34840927

ABSTRACT

The human Abl kinases comprise a family of proteins that are known to be key stimulus drivers in the signaling pathways modulating cell growth, cell survival, cell adhesion, and apoptosis. Recent collative studies have indicated the role of activation of Abl and Abl-related genes in solid tumors; further terming the Abl kinases as molecular switches which promote proliferation, tumorigenesis, and metastasis. The up-regulated Abl-kinase expression in colorectal cancer (CRC) and the role of Abl tyrosine kinase activity in the Matrigel invasion of CRC cells have cemented its significance in CRC advancement. Therefore, the requisite of identifying small molecules which serve as Abl selective inhibitors and designing anti-Abl therapies, particularly for CRC tumors, has driven this study. Curcumin has been touted as an effective inhibitor of cancer cells; however, it is limited by its physicochemical inadequacies. Hence, we have studied the behavior of heterocyclic derivatives of curcumin via computational tools such as pharmacophore-based virtual screening, molecular docking, free-energy binding, and ADME profiling. The most actively docked molecule, 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-carboxamide, was comparatively evaluated against Curcumin via molecular dynamics simulation using Desmond, Schrödinger. The study exhibited the improved stability of the derivative as compared to Curcumin in the tested protein pocket and displayed the interaction bonds with the contacted key amino acids. To further establish the claim, the derivatives were synthesized via the mechanism of cyclization of Curcumin and screened in vitro using SRB assay against human CRC cell line, HCT 116. The active derivative indicated an IC50 value of 5.85 µM, which was sevenfold lower as compared to Curcumin's IC50 of 35.40 µM. Hence, the results base the potential role of the curcumin derivative in modulating Abl-kinase activity and in turn may have potential therapeutic value as a lead for CRC therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03051-9.

2.
Pharmacol Res ; 166: 105489, 2021 04.
Article in English | MEDLINE | ID: mdl-33588007

ABSTRACT

Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Curcumin/analogs & derivatives , Curcumin/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chemistry Techniques, Synthetic , Curcumin/chemical synthesis , Curcumin/pharmacology , Cyclization , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Humans , Neoplasms/drug therapy
3.
Eur J Med Chem ; 177: 76-104, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31129455

ABSTRACT

Curcumin is a pharmacologically active polyphenol derived from the popular spice element-Turmeric. The therapeutic activity of curcumin has been extensively investigated over the last few decades and reports suggest the role of curcumin in a large number of biological activities, particularly its prominent anticancer activity. Curcumin, being a pleiotropic molecule, is a regulator of multiple molecular targets which play crucial roles in various cell signaling pathways. It is known to suppress transformation, inhibit proliferation as well as induce apoptosis. However, despite all these benefits, the efficacy of curcumin remains limited due to its poor bioavailability, poor absorption within the systemic circulation and rapid elimination from the body. To overcome these limiting factors, researchers all around the world are working towards designing a synthetic and superior curcuminoid by making suitable structural modifications to the parent skeleton. These curcuminoids, mainly analogues and derivatives, will not only improve the physicochemical properties but also enhance the efficacy simultaneously. The present review will provide a comprehensive account of the analogues and derivatives of curcumin that have been reported since 2014 which have indicated a better anticancer activity than curcumin.


Subject(s)
Antineoplastic Agents/pharmacology , Curcumin/analogs & derivatives , Curcumin/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Curcumin/chemical synthesis , Humans , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...