Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37109563

ABSTRACT

The use of agrochemicals has become a standard practice worldwide to ensure the productivity and quality of sugarcane crops. This study aimed to analyze the metabolic changes in sugarcane culms treated with five different nematicides. The experimental design was randomized in blocks, and agro-industrial and biometric variables were evaluated. The samples were extracted and then analyzed using LC-MS, LC-MS/MS, and LC-HRMS. The data obtained were submitted to statistical methods (PCA and PLS). Fragmentation patterns, retention time, and UV absorptions of the main features were analyzed. The plantations treated with carbosulfan (T4) obtained higher agricultural productivity and total recoverable sugar (TRS), while the use of benfuracarb (T3) was associated with lower growth and lower TRS. Statistical analysis revealed the contribution of the features at m/z 353 and m/z 515, assigned as chlorogenic acids, which discriminated the groups. The MS profile also supported the occurrence of flavonoids (C-glycosides and O-glycosides) in the samples.

2.
Comb Chem High Throughput Screen ; 23(6): 504-516, 2020.
Article in English | MEDLINE | ID: mdl-32101116

ABSTRACT

BACKGROUND: Tuberculosis is a disease with high incidence and high mortality rate, especially in Brazil. Although there are several medications available for treatment, in cases of resistance, there is a need to use more than one medication. OBJECTIVE: Therefore, cases of toxicity increase and reports of resistance have been worrying the population. In addition, some medications have a short period of effectiveness. To achieve the goal, ligand-based and structure-based approaches were used. METHODS: Thus, in an attempt to discover potent inhibitors against Mycobacterium tuberculosis enzymes, we sought to identify natural products with high therapeutic potential for the treatment of Tuberculosis through QSAR, Molecular Modeling and ADMET studies. RESULTS: The results showed that the models generated from two sets of molecules with known activity against M. tuberculosis enzymes InhA and PS were able to select 11 and 8 compounds, respectively, between Lignans and Neolignans with 50 to 60% activity probability. In addition, molecular docking contributed to confirm the mechanism of action of compounds and increase the accuracy of methodologies. All molecules showed higher binding energy values for the drug Isoniazid. We conclude that compounds 33, 34, 110, 114 and 133 are promising for InhA target and compounds 07, 08, 19, 21, 42, 48, 75 and 141 for target PS. In addition, most molecules did not show any toxicity according to the evaluated parameters. CONCLUSION: Therefore, Lignans and Neolignans may be an alternative for the treatment of Tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , Lignans/pharmacology , Mycobacterium tuberculosis/drug effects , Quantitative Structure-Activity Relationship , Tuberculosis/drug therapy , Antitubercular Agents/chemistry , Antitubercular Agents/isolation & purification , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Humans , Lauraceae/chemistry , Lignans/chemistry , Lignans/isolation & purification , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/metabolism , Tuberculosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...