Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 30(4): 678-688, 2021 May.
Article in English | MEDLINE | ID: mdl-33788078

ABSTRACT

The management of the Neotropical brown stinkbug Euschistus heros (Hemiptera: Pentatomidae) in soybean fields has been heavily dependent on the application of neonicotinoid insecticides. Neonicotinoids act primarily by impairing the function of the nicotinic acetylcholine receptors of the nervous system. These compounds also target specific organs (e.g., salivary glands), which may potentiate their insecticidal efficacy. Here, we evaluated whether the exposure to the neonicotinoid imidacloprid would cause cytomorphological changes in the salivary glands of E. heros. First, we determined the lethal concentrations (LCs) of imidacloprid through contact and ingestion. Subsequently, the cytomorphology of the salivary glands were evaluated in insect groups that survived exposure to the LC5 (3.75 mg a.i./L), LC50 (112.5 mg a.i./L), or LC75 (375.0 mg a.i./L, equivalent to the recommended field rate) doses. Imidacloprid induced apoptosis and necrosis in the salivary gland cells according to the insecticide concentration and salivary gland region. All concentrations increased apoptosis and injured cells (e.g., vacuolization, chromatin condensation, swelling of organelles, and plasma membrane rupture) in the principal and accessory salivary glands. Individuals that survived exposure to the highest concentrations (i.e., LC5 and LC50) were more affected, and exhibited several necrotic cells on their main principal salivary glands. Collectively, our results indicate that imidacloprid exerts toxic effects on the non-target organs, such as the salivary glands, which increases the efficacy of this compound in the management of stink bug infestations.


Subject(s)
Heteroptera , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Salivary Glands
2.
Pest Manag Sci ; 77(1): 417-424, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32761689

ABSTRACT

BACKGROUND: The use of insecticidal solutions containing sodium chloride (NaCl) has been proposed as a more environmentally friendly alternative to managing stink bug infestations of Neotropical soybean fields. The potential sublethal and undesirable effects of this practice have, however, been overlooked, especially with novel insecticides. Here, we have evaluated experimentally whether the addition of NaCl (0.5% w/v) to imidacloprid-containing solutions could alter insecticide toxicity and modify the reproductive responses of the Neotropical brown stink bug Euschistus heros. RESULTS: Adding NaCl to imidacloprid solutions significantly increased imidacloprid toxicity against E. heros. The exposure to E. heros to sublethal concentrations of imidacloprid affected the insect's mating abilities in a concentration-dependent manner. The addition of NaCl to solutions containing imidacloprid at concentrations as low as 0.126 µg a.i. cm-2 (i.e. the equivalent to 3% of field rate recommendation) also impacted the sexual behavior of E. heros, reducing mating duration. NaCl-exposed stink bugs, however, exhibited higher fecundity and fertility rates than those insects that were unexposed to NaCl or those that were exposed to sublethal levels of imidacloprid only. CONCLUSIONS: The addition of low amounts of NaCl resulted in a higher toxicity of imidacloprid. This practice, however, can also lead to undesirable effects as increasing reproductive output of E. heros that can potentially compromise the management of these insect pests.


Subject(s)
Heteroptera , Insecticides , Animals , Neonicotinoids/toxicity , Nitro Compounds , Sodium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...