Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 14: 1122568, 2023.
Article in English | MEDLINE | ID: mdl-36937711

ABSTRACT

Introduction: The aim of the present study was to investigate the behavioral effects of the benzodiazepine midazolam in male mice, in models of anxiolysis, learning, and abuse-related effects. Methods: In a first set of experiments, male Swiss mice were submitted to the training session of a discriminative avoidance (DA) task on the elevated plus maze to evaluate anxiety-like behavior and learning after vehicle or midazolam (1, 2 or 5 mg/kg, i.g.) administration. The same animals were submitted to a conditioned place preference (CPP) protocol with midazolam (1, 2 or 5 mg/kg, i.g.). In a second experiment, outbred (Swiss) and inbred (C57BL/6) male mice were submitted to a two-bottle choice (TBC) oral midazolam drinking procedure. Animals were exposed to one sucrose bottle and one midazolam (0.008, 0.016 or 0.032 mg/ml) plus sucrose bottle. Results: Midazolam (1 and 2 mg/kg) induced anxiolytic-like effects, and all doses of midazolam prevented animals from learning to avoid the aversive closed arm during the DA training session. Assessment of midazolam reward via the CPP procedure and choice via the TBC procedure showed notable variability. A 2-step cluster analysis for the CPP data showed that midazolam data were well-fitted to 2 separate clusters (preference vs. aversion), albeit with the majority of mice showing preference (75%). Correlational and regression analyses showed no relationship between midazolam reward and anxiolytic-like effects (time spent in the open arms in the DA test) or learning/memory. Two-step cluster analysis of the TBC data also demonstrated that, regardless of strain, mice overall fell into two clusters identified as midazolam-preferring or midazolam-avoiding groups. Both midazolam preference and avoidance were concentration-dependent in a subset of mice. Discussion: Our findings show that midazolam preference is a multifactorial behavior, and is not dependent solely on the emergence of therapeutic (anxiolytic-like) effects, learning impairments, or on genetic factors (inbred vs. outbred animals).

2.
Front Pharmacol ; 12: 739012, 2021.
Article in English | MEDLINE | ID: mdl-34621171

ABSTRACT

Ibogaine is a psychedelic extracted from the plant Tabernanthe iboga Baill. (Apocynaceae), natural from Africa, and has been proposed as a potential treatment for substance use disorders. In animal models, ibogaine reduces ethanol self-administration. However, no study to date has investigated the effects of ibogaine on ethanol-induced conditioned place preference (CPP). The present study aimed to investigate the effects of repeated treatment with ibogaine on the reinstatement of CPP to ethanol in male mice. The rewarding effects of ethanol (1.8 g/kg, i. p.) or ibogaine (10 or 30 mg/kg, p. o.) were investigated using the CPP model. Furthermore, we evaluated the effects of repeated treatment with ibogaine (10 or 30 mg/kg, p. o.) on the reinstatement of ethanol-induced CPP. Reinstatement was evaluated under two conditions: 1) during a priming injection re-exposure test in which animals received a priming injection of ethanol and had free access to the CPP apparatus; 2) during a drug-free test conducted 24 h after a context-paired re-exposure, in which subjects received an injection of ethanol and were confined to the compartment previously conditioned to ethanol. Our results show that ethanol, but not ibogaine, induced CPP in mice. Treatment with ibogaine after conditioning with ethanol blocked the reinstatement of ethanol-induced CPP, both during a drug priming reinstatement test and during a drug-free test conducted after re-exposure to ethanol in the ethanol-paired compartment. Our findings add to the literature suggesting that psychedelics, in particular ibogaine, may have therapeutic properties for the treatment of alcohol use disorder at doses that do not have rewarding effects per se.

3.
Psychopharmacology (Berl) ; 237(11): 3269-3281, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32676773

ABSTRACT

RATIONALE: Accumulating evidence suggests that ayahuasca, a hallucinogenic beverage used in traditional Amazonian communities for ritualistic and curative purposes, has been associated with reduced rates of substance use disorders. However, the brain mechanisms underlying the therapeutic effects of ayahuasca have not yet been fully elucidated. OBJECTIVES: The aim of the present study was to investigate the effects of treatment with ayahuasca on the rewarding properties of the psychostimulant methylphenidate. METHODS: The rewarding properties of ayahuasca (100 mg/kg, orally) and methylphenidate (10 mg/kg, i.p.) were investigated using the conditioned place preference (CPP) model. Furthermore, we evaluated the effects of repeated treatment with ayahuasca on the reinstatement of methylphenidate-induced CPP. Fos expression was evaluated in different limbic structures (cingulate cortex-area 1, prelimbic cortex, infralimbic cortex, orbitofrontal cortex-lateral orbital area, nucleus accumbens core and shell, ventral tegmental area, dorsal striatum, and basolateral amygdala) upon each experimental phase. RESULTS: Both ayahuasca and methylphenidate induced CPP in mice. However, ayahuasca had limited effects on Fos expression, while methylphenidate altered Fos expression in several brain regions associated with the behavioral effects of drugs of abuse. Treatment with ayahuasca after conditioning with methylphenidate blocked the reinstatement of methylphenidate-induced CPP. Those behavioral effects were accompanied by changes in Fos expression patterns, with ayahuasca generally blocking the changes in Fos expression induced by conditioning with methylphenidate and/or reexposure to methylphenidate. CONCLUSIONS: Our findings suggest that ayahuasca restored normal brain function in areas associated with the long-term expression of drug wanting/seeking in animals conditioned to methylphenidate.


Subject(s)
Banisteriopsis , Brain/drug effects , Brain/metabolism , Conditioning, Classical/drug effects , Methylphenidate/administration & dosage , Proto-Oncogene Proteins c-fos/biosynthesis , Administration, Oral , Animals , Central Nervous System Stimulants/administration & dosage , Conditioning, Classical/physiology , Drug-Seeking Behavior/drug effects , Drug-Seeking Behavior/physiology , Gene Expression , Hallucinogens/administration & dosage , Male , Mice , Proto-Oncogene Proteins c-fos/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...