Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 16048, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34362992

ABSTRACT

This paper is devoted to the study of vortex beam transmission from an adjustable magnetized plasma-ferrite structure with negative refraction index. We use the angular spectral expansion technique together with the [Formula: see text] matrix method to find out the transmitted intensity and phase profiles of incoming Laguerre-Gaussian beam. Based on numerical analysis we demonstrate that high transparency and large amount of Faraday rotation in the proximity of resonance frequency region, reverse rotation of spiral wave front, and side-band modes generation during propagation are the remarkable features of our proposed structure. These controllable properties of plasma-ferrite metamaterials via external static magnetic field and other structure parameters provide novel facilities for manipulating intensity and phase profiles of vortex radiation in transmission through the material. It is expected that the results of this work will be beneficial to develop active magneto-optical devices, orbital angular momentum based applications, and wavefront engineering.

2.
Nat Commun ; 12(1): 3240, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34050147

ABSTRACT

Turbulent radiation flow is commonplace in systems with strong, incoherent, light-matter interactions. In astrophysical contexts, photon bubble turbulence is considered a key mechanism behind enhanced radiation transport, and its importance has been widely asserted for a variety of high energy objects such as accretion disks and massive stars. Here, we show that analogous conditions to those of dense astrophysical objects can be obtained in large clouds of cold atoms, prepared in a laser-cooling experiment, driven close to a sharp electronic resonance. By accessing the spatially-resolved atom density, we are able to identify a photon bubble instability and the resulting regime of photon bubble turbulence. We also develop a theoretical model describing the coupled dynamics of both photon and atom gases, which accurately describes the statistical properties of the turbulent regime. This study thus opens the possibility of simulating radiation-dominated astrophysical systems in cold atom experiments.

3.
Phys Rev Lett ; 126(15): 150602, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929251

ABSTRACT

Phase transitions, being the ultimate manifestation of collective behavior, are typically features of many-particle systems only. Here, we describe the experimental observation of collective behavior in small photonic condensates made up of only a few photons. Moreover, a wide range of both equilibrium and nonequilibrium regimes, including Bose-Einstein condensation or laserlike emission are identified. However, the small photon number and the presence of large relative fluctuations places major difficulties in identifying different phases and phase transitions. We overcome this limitation by employing unsupervised learning and fuzzy clustering algorithms to systematically construct the fuzzy phase diagram of our small photonic condensate. Our results thus demonstrate the rich and complex phase structure of even small collections of photons, making them an ideal platform to investigate equilibrium and nonequilibrium physics at the few particle level.

4.
Nat Commun ; 11(1): 1390, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32170081

ABSTRACT

While equilibrium phase transitions are easily described by order parameters and free-energy landscapes, for their non-stationary counterparts these quantities are usually ill-defined. Here, we probe transient non-equilibrium dynamics of an optically pumped, dye-filled microcavity. We quench the system to a far-from-equilibrium state and find delayed condensation close to a critical excitation energy, a transient equivalent of critical slowing down. Besides number fluctuations near the critical excitation energy, we show that transient phase transitions exhibit timing jitter in the condensate formation. This jitter is a manifestation of the randomness associated with spontaneous emission, showing that condensation is a stochastic, rather than deterministic process. Despite the non-equilibrium character of this phase transition, we construct an effective free-energy landscape that describes the formation jitter and allows, in principle, its generalization to a wider class of processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...