Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Braz J Microbiol ; 51(2): 455-465, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32016818

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) represents one of the most important etiological agents of diarrhea in developing countries and characteristically produces at least one of two enterotoxins: heat-labile toxin (LT) and heat-stable toxin (ST). It has been previously shown that the production and release of LT by human-derived ETEC strains are variable. Although the natural genetic polymorphisms of regulatory sequences of LT-encoding (eltAB) genes may explain the variable production of LT, the knowledge of the transcriptional and posttranscriptional aspects affecting LT expression among ETEC strains is not clear. To further understand the factors affecting LT expression, we evaluated the impact of the natural polymorphism in noncoding regulatory sequences of eltAB among clinically derived ETEC strains. Sequence analyses of seven clinically derived strains and the reference strain H10407 revealed polymorphic sites at both the promoter and upstream regions of the eltAB operon. Operon fusion assays with GFP revealed that specific nucleotide changes in the Pribnow box reduce eltAB transcription. Nonetheless, the total amounts of LT produced by the tested ETEC strains did not strictly correspond to the detected LT-specific mRNA levels. Indeed, the stability of LT varied according to the tested strain, indicating the presence of posttranscriptional mechanisms affecting LT expression. Taken together, our results indicate that the production of LT is a strain-specific process and involves transcriptional and posttranscriptional mechanisms that regulate the final amount of toxin produced and released by specific strains.


Subject(s)
Bacterial Toxins/genetics , Enterotoxigenic Escherichia coli/genetics , Enterotoxins/genetics , Gene Expression Regulation, Bacterial , Transcription, Genetic , Escherichia coli Proteins/genetics , Operon , Polymorphism, Genetic , Temperature
2.
Rev Soc Bras Med Trop ; 52: e20190089B, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31038624

ABSTRACT

INTRODUCTION: The relationships between phagocytosis, and mucoid phenotype, plasmid profile and virulence, and resistance genetic characteristics of Klebsiella pneumoniae clinical isolates were evaluated. METHODS: Thirty isolates were used to determine the mucoid aspect. Four were selected for analysis of phagocytosis by alveolar macrophages. RESULTS: Thirty percent of the samples presented the mucoid phenotype. The phagocytosis rate ranged from 21.5% to 43.43%. Phagocytosis was not correlated with the plasmid profile, but was apparently correlated with mucoid phenotype and antibiotic susceptibility. CONCLUSIONS: Several virulence factors act in parallel in K. pneumoniae to impair host defense.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Klebsiella pneumoniae/genetics , Phagocytosis/genetics , Virulence Factors/genetics , Virulence/genetics , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Phagocytosis/physiology , Phenotype , Plasmids
3.
Rev. Soc. Bras. Med. Trop ; 52: e20190089B, 2019. tab, graf
Article in English | LILACS | ID: biblio-1041519

ABSTRACT

Abstract INTRODUCTION The relationships between phagocytosis, and mucoid phenotype, plasmid profile and virulence, and resistance genetic characteristics of Klebsiella pneumoniae clinical isolates were evaluated. METHODS Thirty isolates were used to determine the mucoid aspect. Four were selected for analysis of phagocytosis by alveolar macrophages. RESULTS Thirty percent of the samples presented the mucoid phenotype. The phagocytosis rate ranged from 21.5% to 43.43%. Phagocytosis was not correlated with the plasmid profile, but was apparently correlated with mucoid phenotype and antibiotic susceptibility. CONCLUSIONS: Several virulence factors act in parallel in K. pneumoniae to impair host defense.


Subject(s)
Humans , Phagocytosis/genetics , Virulence/genetics , Drug Resistance, Microbial/genetics , Virulence Factors/genetics , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Phagocytosis/physiology , Phenotype , Plasmids , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity
4.
Vaccine ; 35(52): 7273-7282, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29146379

ABSTRACT

In this study, we evaluated the immunogenicity, protective efficacy and peptide-based immune signatures of antibodies raised in mice after sublingual immunization with a recombinant form of the P1 (aka AgI/II, PAc) adhesin (P139-512) of Streptococcus mutans, a major etiological agent of dental caries. Sublingual administration of P139-512 in combination with the mucosal adjuvant LTK4R (a derivative of heat-labile LT toxin) induced strong and long-lasting systemic and mucosal immune responses. Incorporation of the adjuvant resulted in an enhancement of the anti-adhesive and anti-colonization activity against S. mutans as evaluated both under in vitro and in vivo conditions. Incorporation of the adjuvant to the vaccine formulation also changed the epitope specificity of the induced antibodies as determined by immunological signatures of sera collected from vaccinated mice. Use of a peptide microarray library led to the identification of peptide targets recognized by antibodies in serum samples with enhanced anti-adhesive effects. Altogether, the results presented herein showed that the sublingual administration of a P1-based subunit vaccine represents a promising approach for the prevention of dental caries caused by S. mutans. In addition, the present study disclosed the role of adjuvants on the epitope specificity and functionality of antibodies raised by subunit vaccines.


Subject(s)
Adhesins, Bacterial/immunology , Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Epitopes/immunology , Immunogenicity, Vaccine , Streptococcus mutans/immunology , Adhesins, Bacterial/administration & dosage , Adjuvants, Immunologic/administration & dosage , Administration, Sublingual , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/classification , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Dental Caries/microbiology , Dental Caries/prevention & control , Epitopes/chemistry , Immunity, Mucosal , Immunization , Immunoglobulin A, Secretory/analysis , Immunoglobulin G/blood , Mice , Microarray Analysis , Saliva/immunology , Streptococcus mutans/chemistry , Streptococcus mutans/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
5.
Front Immunol ; 8: 1175, 2017.
Article in English | MEDLINE | ID: mdl-28993770

ABSTRACT

The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

6.
Front. Immunol. ; 8(1175)set. 25, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IPPROD, Sec. Est. Saúde SP | ID: biblio-1017359

ABSTRACT

The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.(AU) i


Subject(s)
Humans , Animals , Toxins, Biological , Dengue Virus/immunology , Vaccines , Viral Envelope Proteins/immunology , Adjuvants, Immunologic , Antibodies, Viral
7.
Front. Immunol. ; 8: 1175, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15722

ABSTRACT

The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

8.
Microb Pathog ; 96: 15-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27133266

ABSTRACT

Eighty-five isolates of Klebsiella pneumoniae and Enterobacter spp., originating from hospital- and community-acquired infections and from oropharyngeal and faecal microbiota from patients in Recife-PE, Brazil, were analyzed regarding the presence of irp2 gene. This is a Yersinia typical gene involved in the synthesis of siderophore yersiniabactin. DNA sequencing confirmed the identity of irp2 gene in five K. pneumoniae, five Enterobacter aerogenes and one Enterobacter amnigenus isolates. To our knowledge in the current literature, this is the first report of the irp2 gene in E. amnigenus, a species considered an unusual human pathogen, and in K. pneumoniae and E. aerogenes isolates from the normal microbiota and from community infections, respectively. Additionally, the analyses of nucleotide and amino acid sequences suggest the irp2 genes derived from isolates used in this study are more closely related to that of Yersinia pestis P.CE882 than to that of Yersinia enterocolitica 8081. These data demonstrated that K. pneumoniae and Enterobacter spp. from normal microbiota and from community- and hospital-acquired infections possess virulence factors important for the establishment of extra-intestinal infections.


Subject(s)
Community-Acquired Infections/microbiology , Cross Infection/microbiology , Enterobacter/genetics , Enterobacteriaceae Infections/microbiology , Iron Regulatory Protein 2/analysis , Klebsiella pneumoniae/genetics , Microbiota , Brazil , Enterobacter/isolation & purification , Feces/microbiology , Iron Regulatory Protein 2/genetics , Klebsiella pneumoniae/isolation & purification , Oropharynx/microbiology , Sequence Analysis, DNA , Virulence Factors/analysis , Virulence Factors/genetics
9.
Vaccine ; 30(5): 837-45, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22178517

ABSTRACT

The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LT(G33D)), originally produced by some enterotoxigenic Escherichia coli (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LT(G33D). Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LT(G33D) elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LT(G33D.) Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LT(G33D). Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Bacterial Toxins/administration & dosage , Dengue Vaccines/immunology , Dengue Virus/immunology , Enterotoxins/administration & dosage , Escherichia coli Proteins/administration & dosage , Toxoids/administration & dosage , Viral Nonstructural Proteins/immunology , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/genetics , Aluminum Hydroxide/administration & dosage , Animals , Antibodies, Viral/blood , Bacterial Toxins/adverse effects , Bacterial Toxins/genetics , Dengue/mortality , Dengue/pathology , Dengue Vaccines/administration & dosage , Dengue Vaccines/adverse effects , Dengue Virus/genetics , Enterotoxins/adverse effects , Enterotoxins/genetics , Escherichia coli Proteins/adverse effects , Escherichia coli Proteins/genetics , Freund's Adjuvant/administration & dosage , Humans , Injections, Subcutaneous , Mice , Mice, Inbred BALB C , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Survival Analysis , T-Lymphocytes/immunology , Toxoids/adverse effects , Toxoids/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Viral Nonstructural Proteins/genetics
10.
Mem Inst Oswaldo Cruz ; 102(7): 827-32, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17992365

ABSTRACT

PCR analysis of 16S-23S internal transcribed spacer (PCR ribotyping) and tRNA intergenic spacer (tDNA-PCR) were evaluated for their effectiveness in identification of clinical strains of Klebsiella pneumoniae and differentiation with related species. For this purpose both methods were applied to forty-three clinical isolates biochemically identified as K. pneumoniae subsp. pneumoniae isolated from patients clinical specimens attended at five hospitals in three Brazilian cities. References strains of K. pneumoniae subsp. pneumoniae, K. pneumoniae subsp. ozaenae, K. oxytoca, K. planticola and Enterobacter aerogenes were also analyzed. Both PCR methods showed specific patterns for each species. A conserved PCR ribotype pattern was observed for all clinical K. pneumoniae isolates, while differing from other related analyzed species. tDNA-PCR revealed five distinct patterns among the K. pneumoniae clinical isolates studied, demonstrating a predominant group with 90.6% of isolates presenting the same pattern of K. pneumoniae type strain. Both PCR-based methods were not able to differentiate K. pneumoniae subspecies. On the basis of the results obtained, both methods were efficient to differentiate the Klebsiella species analyzed, as well as E. aerogenes. Meanwhile tDNA-PCR revealed different tRNA arrangements in K. pneumoniae, suggesting intra-species heterogeneity of their genome organization, the polymorphism of the intergenic spacers between 16S and 23S rRNA genes appears to be highly conserved whithin K. pneumoniae clinical isolates, showing that PCR ribotyping can be an useful tool for identification of K. pneumoniae isolates.


Subject(s)
DNA, Bacterial/genetics , DNA, Intergenic/genetics , Klebsiella pneumoniae/genetics , Ribotyping/methods , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/isolation & purification , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Reproducibility of Results
11.
Mem. Inst. Oswaldo Cruz ; 102(7): 827-832, Nov. 2007. ilus, graf, tab
Article in English | LILACS | ID: lil-470350

ABSTRACT

PCR analysis of 16S-23S internal transcribed spacer (PCR ribotyping) and tRNA intergenic spacer (tDNA-PCR) were evaluated for their effectiveness in identification of clinical strains of Klebsiella pneumoniae and differentiation with related species. For this purpose both methods were applied to forty-three clinical isolates biochemically identified as K. pneumoniae subsp. pneumoniae isolated from patients clinical specimens attended at five hospitals in three Brazilian cities. References strains of K. pneumoniae subsp. pneumoniae, K. pneumoniae subsp. ozaenae, K. oxytoca, K. planticola and Enterobacter aerogenes were also analyzed. Both PCR methods showed specific patterns for each species. A conserved PCR ribotype pattern was observed for all clinical K. pneumoniae isolates, while differing from other related analyzed species. tDNA-PCR revealed five distinct patterns among the K. pneumoniae clinical isolates studied, demonstrating a predominant group with 90,6 percent of isolates presenting the same pattern of K. pneumoniae type strain. Both PCR-based methods were not able to differentiate K. pneumoniae subspecies. On the basis of the results obtained, both methods were efficient to differentiate the Klebsiella species analyzed, as well as E. aerogenes. Meanwhile tDNA-PCR revealed different tRNA arrangements in K. pneumoniae, suggesting intra-species heterogeneity of their genome organization, the polymorphism of the intergenic spacers between 16S and 23S rRNA genes appears to be highly conserved whithin K. pneumoniae clinical isolates, showing that PCR ribotyping can be an useful tool for identification of K. pneumoniae isolates.


Subject(s)
DNA, Bacterial/genetics , DNA, Intergenic/genetics , Klebsiella pneumoniae/genetics , Ribotyping/methods , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/isolation & purification , Polymerase Chain Reaction , Reproducibility of Results , /genetics , /genetics
12.
Braz. j. microbiol ; 38(3): 446-451, July-Sept. 2007. graf, tab
Article in English | LILACS, Sec. Est. Saúde SP | ID: lil-464769

ABSTRACT

The heat-labile toxin (LT) is a key virulence-associated factor associated with the non-invasive secretory diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains either in humans or domestic animals. Several LT detection methods have been reported but quantification of the toxin produced by wild-type ETEC strains is usually performed by the GM1 ganglyoside enzyme-linked immunosorbent assay (GM1 ELISA). In this study we conducted the optimization of an alternative LT-quantification method, the antibody-capture ELISA (cELISA). Detailed analysis of the appropriate dilutions of capture and detecting LT-specific antibodies significantly improved the sensitivity of the method. Additionally, testing of different LT extraction techniques indicated that sonic disruption of the bacterial cells enhanced LT recovery yields, in contrast to the usual procedure based on addition of polymyxin B to the culture medium as well as extraction methods based on chloroform or Triton X-100. Moreover, the present data indicate that performance of the LT extraction method based on polymyxin B treatment can vary among wild ETEC strains.


A toxina termo-lábil (LT) é um fator de virulência associado à diarréia secretora não invasiva causada por linhagens de Escherichia coli enterotoxigênica (ETEC) em humanos ou animais domésticos. Diversos métodos de detecção de LT foram descritos na literatura, no entanto, a quantificação da toxina produzida por linhagens selvagens de ETEC é geralmente realizada por ensaio imunoenzimático com o gangliosídeo GM-1 (GM-1 ELISA). Neste estudo, conduzimos uma otimização experimental de um método alternativo de quantificação de LT, o ELISA de captura (cELISA). Análise detalhada de diluições apropriadas dos anticorpos LT específicos de captura e detecção melhorou significantemente a sensibilidade do método. Em adição, testes com diferentes técnicas de extração de LT indicaram que a ruptura das células por ultra-som, mas não o tratamento com polimixina B, clorofórmio ou Triton X-100, aumentou o rendimento da recuperação de LT. Além disto, os dados apresentados demonstram que o desempenho do método de extração de LT baseado no tratamento com polimixina B pode variar entre linhagens selvagens de ETEC.


Subject(s)
Child , Humans , Clinical Enzyme Tests , Escherichia coli , Escherichia coli Infections , In Vitro Techniques , Toxins, Biological/analysis , Toxins, Biological/isolation & purification , Virulence , Enzyme-Linked Immunosorbent Assay , Sampling Studies , Methods
13.
FEMS Immunol Med Microbiol ; 48(1): 123-31, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16965360

ABSTRACT

Production and release of heat-labile toxin (LT) by wild-type enterotoxigenic Escherichia coli (ETEC) strains, isolated from diarrheic and asymptomatic Brazilian children, was studied under in vitro and in vivo conditions. Based on a set of 26 genetically diverse LT(+) enterotoxigenic E. coli strains, cell-bound LT concentrations varied from 49.8 to 2415 ng mL(-1). The amounts of toxin released in culture supernatants ranged from 0% to 50% of the total synthesized toxin. The amount of LT associated with secreted membrane vesicles represented <5% of the total toxin detected in culture supernatants. ETEC strains secreting higher amounts of LT, but not those producing high intracellular levels of cell-bound toxin, elicited enhanced fluid accumulation in tied rabbit ileal loops, suggesting that the strain-specific differences in production and secretion of LT correlates with symptoms induced in vivo. However, no clear correlation was established between the ability to produce and secrete LT and the clinical symptoms of the infected individuals. The present results indicate that production and release of LT by wild-type human-derived ETEC strains are heterogeneous traits under both in vitro and in vivo growth conditions and may impact the clinical outcomes of infected individuals.


Subject(s)
Enterotoxins/biosynthesis , Escherichia coli/metabolism , Animals , Enterotoxins/genetics , Enterotoxins/metabolism , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Hot Temperature , Humans , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...