Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Med Sci ; 38(1): 251, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919479

ABSTRACT

Despite significant efforts to control cancer progression and to improve oncology treatment outcomes, recurrence and tumor resistance are frequently observed in cancer patients. These problems are partly related to the presence of cancer stem cells (CSCs). Photodynamic therapy (PDT) has been developed as a therapeutic approach for solid tumors; however, it remains unclear how this therapy can affect CSCs. In this review, we focus on the effects of PDT on CSCs and the possible changes in the CSC population after PDT exposure. Tumor response to PDT varies according to the photosensitizer and light parameters employed, but most studies have reported the successful elimination of CSCs after PDT. However, some studies have reported that CSCs were more resistant to PDT than non-CSCs due to the increased efflux of photosensitizer molecules and the action of autophagy. Additionally, using different PDT approaches to target the CSCs resulted in increased sensitivity, reduction of sphere formation, invasiveness, stem cell phenotype, and improved response to chemotherapy. Lastly, although mainly limited to in vitro studies, PDT, combined with targeted therapies and/or chemotherapy, could successfully target CSCs in different solid tumors and promote the reduction of stemness, suggesting a promising therapeutic approach requiring evaluation in robust pre-clinical studies.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Photochemotherapy/methods , Neoplastic Stem Cells
2.
J Oral Maxillofac Pathol ; 27(3): 507-514, 2023.
Article in English | MEDLINE | ID: mdl-38033949

ABSTRACT

Background: Oral squamous cell carcinoma (OSCC) accounts for 90% of oral malignancies, which may be preceded by oral potentially malignant disorders (OPMDs). Cancer progression involves the downregulation of epithelial markers (E-cadherin) and the upregulation of mesenchymal markers (N-cadherin), which together characterise the epithelial-mesenchymal transition (EMT). Furthermore, caveolin can act on cell adhesion and migration events that regulate the expression of the E-cadherin/α-ß-catenin complex, thus favouring aggressive biological behaviour. This study aimed to analyse the immunoexpression of E-cadherin, N-cadherin and caveolin-2 at different stages of oral carcinogenesis to identify reliable biomarkers to predict malignant potential. Methods: Expressions of E-cadherin and N-cadherin in 14 normal oral mucosae (NOM), 14 OPMD and 33 OSCC specimens were evaluated using immunohistochemistry. Clinicopathological parameters were also assessed. Results: E-cadherin immunoexpression was significantly reduced during the progression of oral carcinogenesis (P = 0.0018). N-cadherin immunoexpression did not show any statistical differences between these groups. However, a representative number of N-cadherin-positive OSCC cases did not express E-cadherin. The expression of caveolin-2 increased significantly with the progression of the disease, from NOM to OSCC (P value: 0.0028). Conclusion: These findings indicate that cadherin switch and caveolin-2 immunoexpression may be regulatory events in oral carcinogenesis.

3.
J Cell Mol Med ; 22(10): 4922-4934, 2018 10.
Article in English | MEDLINE | ID: mdl-30024093

ABSTRACT

Macrophages play a very important role in the conduction of several regenerative processes mainly due to their plasticity and multiple functions. In the muscle repair process, while M1 macrophages regulate the inflammatory and proliferative phases, M2 (anti-inflammatory) macrophages direct the differentiation and remodelling phases, leading to tissue regeneration. The aim of this study was to evaluate the effect of red and near infrared (NIR) photobiomodulation (PBM) on macrophage phenotypes and correlate these findings with the repair process following acute muscle injury. Wistar rats were divided into 4 groups: control; muscle injury; muscle injury + red PBM; and muscle injury + NIR PBM. After 2, 4 and 7 days, the tibialis anterior muscle was processed for analysis. Macrophages phenotypic profile was evaluated by immunohistochemistry and correlated with the different stages of the skeletal muscle repair by the qualitative and quantitative morphological analysis as well as by the evaluation of IL-6, TNF-α and TGF-ß mRNA expression. Photobiomodulation at both wavelengths was able to decrease the number of CD68+ (M1) macrophages 2 days after muscle injury and increase the number of CD163+ (M2) macrophages 7 days after injury. However, only NIR treatment was able to increase the number of CD206+ M2 macrophages (Day 2) and TGF-ß mRNA expression (Day 2, 4 and 7), favouring the repair process more expressivelly. Treatment with PBM was able to modulate the inflammation phase, optimize the transition from the inflammatory to the regeneration phase (mainly with NIR light) and improve the final step of regeneration, enhancing tissue repair.


Subject(s)
Low-Level Light Therapy , Muscle Development/radiation effects , Muscles/radiation effects , Regeneration/radiation effects , Animals , Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Cell Differentiation/radiation effects , Humans , Macrophages/pathology , Macrophages/radiation effects , Muscle, Skeletal/growth & development , Muscle, Skeletal/injuries , Muscle, Skeletal/radiation effects , Muscles/injuries , Muscles/pathology , Rats , Receptors, Cell Surface/genetics , Wound Healing/physiology , Wound Healing/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...