Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 156: 33-46, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30273616

ABSTRACT

Unhealthy lifestyle persistently feeds forward inflammation in metabolic organs thus imposing senescence-associated secretory phenotype (SASP), as observed in obesity and type 2 diabetes. However, SASP blocks physiological resolution of inflammation by suppressing the anti-inflammatory and anti-senescent heat shock (HS) response, i.e., the gene program centered in heat shock factor-1 (HSF1)-dependent expression heat shock proteins (HSPs). As SASP-inducing factors are not removed, leading to the perpetuation of inflammation, we argued that SIRT1-HSF1-HSP axis might also be suppressed in atherosclerosis, which could be reversible by heat treatment (HT), the most powerful HS response trigger. LDLr-/- adult mice were fed on high-fat/high-cholesterol diet from the age of 90 days until the end of study (age of 270 days). After 120 days under atherosclerotic diet, the animals were submitted to either whole-body HT (n = 42; 40 °C) or sham (n = 59; 37 °C) treatment (15 min/session), under anesthesia, once a week, for 8 weeks, being echographically and metabolically monitored. Aortic expressions of SIRT1, HSF1, HSP27, HSP72 and HSP73 were progressively depressed in atherosclerotic animals, as compared to normal (LDLr+/+; n = 25) healthy counterparts, which was paralleled by increased expression of NF-κB-dependent VCAM1 adhesion molecule. Conversely, HT completely reversed suppression of the above HS response proteins, while markedly inhibiting both VCAM1 expression and NF-κB DNA-binding activity. Also, HT dramatically reduced plasma levels of TG, total cholesterol, LDL-cholesterol, oxidative stress, fasting glucose and insulin resistance while rising HDL-cholesterol levels. HT also decreased body weight gain, visceral fat, cellular infiltration and aortic fatty streaks, and heart ventricular congestive hypertrophy, thereby improving aortic blood flow and myocardial performance (Tei) indices. Remarkably, heat-treated mice stopped dying after the third HT session (= 8 human years), suggesting a curative effect. Therefore, evolution of atherosclerosis is associated with suppression of the anti-inflammatory and anti-senescent SIRT1-HSF1-HSP molecular axis, which is refreshed by chronic heat treatment.


Subject(s)
Aorta/metabolism , Atherosclerosis/therapy , Heat-Shock Response , Hyperthermia, Induced , Animals , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/adverse effects , Cholesterol/pharmacology , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Gene Expression Regulation , Heat-Shock Proteins/biosynthesis , Hot Temperature , Male , Mice , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism , Sirtuin 1/biosynthesis
2.
Exp Gerontol ; 111: 180-187, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30053413

ABSTRACT

Recent evidence suggests that the anti-inflammatory heat shock response (HSR) is reduced in aging and diabetes. In this study we compared HSR between healthy middle-aged adults, healthy elderly and type 2 diabetic (T2DM) elderly, and tested whether resistance training (RT) could improve the HSR in T2DM group. Thirty sedentary participants volunteered for this study. HSR (assessed as the capacity to export HSP72 during heat stress) was measured in the blood and compared between the groups. HSR was similar between healthy middle-aged and healthy elderly volunteers, but diminished in elderly T2DM (p < 0.001). Hence, T2DM subjects (n = 12) were submitted to a 12-week RT program, because exercise is a physiological HSR inducer. HSR, cytokines, metabolic parameters and visceral adipose tissue (VAT) were measured before and after the RT. Remarkably, VAT was negatively correlated with HSR (r = - 0.49, p < 0.01) while RT improved the HSR and reduced inflammation [TNF-α: from 51.5 ±â€¯9 to 40.7 ±â€¯4 pg/mL and TNF-α/IL-10 ratio: from 1.55 ±â€¯0.3 to 1.16 ±â€¯0.2 (p < 0.001)], without affecting other parameters. All together, these findings confirm the hypothesis that the anti-inflammatory HSR is depressed in elderly diabetic people, but can be partially restored by RT.


Subject(s)
Aging/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , HSP72 Heat-Shock Proteins/metabolism , Resistance Training/methods , Aged , Female , Heat-Shock Response , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Tumor Necrosis Factor-alpha/metabolism
3.
Mol Cell Biochem ; 411(1-2): 351-62, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26530165

ABSTRACT

In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.


Subject(s)
Diet, High-Fat , Disease Models, Animal , Glutamine/administration & dosage , Insulin Resistance , Administration, Oral , Animals , Glutamine/analogs & derivatives , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...