Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 96(9): 2559-2572, 2022 09.
Article in English | MEDLINE | ID: mdl-35666269

ABSTRACT

The misuse of novichok agents in assassination attempts has been reported in the international media since 2018. These relatively new class of neurotoxic agents is claimed to be more toxic than the agents of the G and V series and so far, there is no report yet in literature about potential antidotes against them. To shed some light into this issue, we report here the design and synthesis of NTMGMP, a surrogate of A-242 and also the first surrogate of a novichok agent useful for experimental evaluation of antidotes. Furthermore, the efficiency of the current commercial oximes to reactivate NTMGMP-inhibited acetylcholinesterase (AChE) was evaluated. The Ellman test was used to confirm the complete inhibition of AChE, and to compare the subsequent rates of reactivation in vitro as well as to evaluate aging. In parallel, molecular docking, molecular dynamics and MM-PBSA studies were performed on a computational model of the human AChE (HssAChE)/NTMGMP complex to assess the reactivation performances of the commercial oximes in silico. Experimental and theoretical studies matched the exact hierarchy of efficiency and pointed to trimedoxime as the most promising commercial oxime for reactivation of AChE inhibited by A-242.


Subject(s)
Cholinesterase Reactivators , Nerve Agents , Acetylcholinesterase , Antidotes/pharmacology , Cholinesterase Inhibitors/toxicity , Cholinesterase Reactivators/pharmacology , Humans , Molecular Docking Simulation , Nerve Agents/toxicity , Oximes/pharmacology
2.
J Enzyme Inhib Med Chem ; 36(1): 1370-1377, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34148470

ABSTRACT

Organophosphorus poisoning caused by some pesticides and nerve agents is a life-threating condition that must be swiftly addressed to avoid casualties. Despite the availability of medical countermeasures, the clinically available compounds lack a broad spectrum, are not effective towards all organophosphorus toxins, and have poor pharmacokinetics properties to allow them crossing the blood-brain barrier, hampering cholinesterase reactivation at the central nervous system. In this work, we designed and synthesised novel isatin derivatives, linked to a pyridinium 4-oxime moiety by an alkyl chain with improved calculated properties, and tested their reactivation potency against paraoxon- and NEMP-inhibited acetylcholinesterase in comparison to the standard antidote pralidoxime. Our results showed that these compounds displayed comparable in vitro reactivation also pointed by the in silico studies, suggesting that they are promising compounds to tackle organophosphorus poisoning.


Subject(s)
Acetylcholinesterase/drug effects , Cholinesterase Reactivators/pharmacology , Isatin/pharmacology , Pyridines/pharmacology , Computer Simulation , In Vitro Techniques
3.
Mem Inst Oswaldo Cruz ; 115: e200370, 2020.
Article in English | MEDLINE | ID: mdl-33174903

ABSTRACT

BACKGROUND: Bacillus anthracis is the aetiologic agent of anthrax, a re-emerging, septicaemic, haemorrhagic and lethal disease that affects humans, domestic ruminants and wildlife. Plasmids pXO1 and pXO2 are attributes that confer pathogenicity to B. anthracis strains. This bacterium was used as biological weapon in the World Wars and in the biological attack in the United States of America at 2001. B. anthracis is classified as a Tier 1 bioterrorism agent by the Centers for Diseases Control and Prevention. Anthrax is recognised as a re-emerging disease. Several studies concerning the dynamics of B. anthracis cycle in soil revealed that nonpathogenic B. anthracis strains due to lack of pXO2 plasmid are commonly found in some types of soil. OBJECTIVES: This study aimed isolation and identification of B. anthracis spores in soil samples of the state of Rio de Janeiro, Brazil. METHODS: Phenotypic and genotypic approaches were used to identify isolates including MALDI-TOF/MS, motility test, susceptibility to gamma phage and penicillin, survey for pag and cap genes as surrogates of pXO1 and pXO2 plasmids, respectively, and sequencing of 16SrRNA-encoding gene. Physicochemical analysis of the soil samples were carried out to describe soil characteristics. FINDINGS: We observed the presence of one B. anthracis pXO1+ and pXO2- isolated from clay loam soil; one B. anthracis-like strain pXO1+ and pXO2-isolated from loamy sand; and 10 Bacillus spp. strains sensitive to phage-gamma that need better characterisation to define which their species were recovered from loamy sand. MAIN CONCLUSIONS: This work showed promising results and it was the first study to report results from an active surveillance for B. anthracis in Brazil.


Subject(s)
Bacillus anthracis/isolation & purification , DNA, Bacterial/genetics , Plasmids/analysis , Polymerase Chain Reaction/methods , Soil Microbiology , Spores, Bacterial , Virulence Factors/genetics , Antigens, Bacterial , Bacillus anthracis/genetics , Bacillus anthracis/pathogenicity , Bacterial Toxins , Brazil , DNA, Bacterial/analysis , Humans , Plasmids/genetics , Sequence Analysis, DNA , Soil , Virulence
4.
Biomolecules ; 9(10)2019 10 08.
Article in English | MEDLINE | ID: mdl-31597234

ABSTRACT

Casualties caused by organophosphorus pesticides are a burden for health systems in developing and poor countries. Such compounds are potent acetylcholinesterase irreversible inhibitors, and share the toxic profile with nerve agents. Pyridinium oximes are the only clinically available antidotes against poisoning by these substances, but their poor penetration into the blood-brain barrier hampers the efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in future SAR studies, we evaluated neutral aryloximes as reactivators for paraoxon-inhibited Electrophorus eel acetylcholinesterase. Our findings may result into lead compounds, useful for development of more active compounds for emergencies and supportive care.


Subject(s)
Acetylcholinesterase/metabolism , Electrophorus/metabolism , Enzyme Reactivators/pharmacology , Oximes/pharmacology , Paraoxon/toxicity , Animals , Enzyme Reactivators/chemistry , Fish Proteins/metabolism , In Vitro Techniques , Molecular Structure , Oximes/chemistry , Structure-Activity Relationship
5.
Chem Biol Interact ; 309: 108682, 2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31163137

ABSTRACT

Casualties caused by nerve agents, potent acetylcholinesterase inhibitors, have attracted attention from media recently. Poisoning with these chemicals may be fatal if not correctly addressed. Therefore, research on novel antidotes is clearly warranted. Pyridinium oximes are the only clinically available compounds, but poor penetration into the blood-brain barrier hampers efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in SAR studies, we synthesized and evaluated neutral aryloximes as reactivators for acetylcholinesterase inhibited by NEMP, a VX surrogate. Although few tested compounds reached comparable reactivation results with clinical standards, they may be considered as leads for further optimization.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Reactivators/chemical synthesis , Oximes/chemistry , Pyrrolidines/chemistry , Acetylcholinesterase/chemistry , Animals , Antidotes/chemical synthesis , Antidotes/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Reactivators/metabolism , Eels , Organothiophosphorus Compounds/chemistry , Organothiophosphorus Compounds/metabolism , Oximes/metabolism , Pyrrolidines/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...