Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38970380

ABSTRACT

Alternative strategies for controlling Staphylococcus aureus and other pathogens have been continuously investigated, with nisin, a bacteriocin widely used in the food industry as a biopreservative, gaining increasing attention. In addition to its antimicrobial properties, bacteriocins have significant effects on genome functionality even at inhibitory concentrations. This study investigated the impact of subinhibitory concentrations of nisin on S. aureus. Culturing in the presence of 0.625 µmol l-1 nisin, led to the increased relative expression of hla, saeR, and sarA, genes associated with virulence while expression of the sea gene, encoding staphylococcal enterotoxin A (SEA), decreased. In an in vivo experiment, Galleria mellonella larvae inoculated with S. aureus cultured in the presence of nisin exhibited 97% mortality at 72 h post-infection, compared to over 40% of larvae mortality in larvae infected with S. aureus. A comprehensive understanding of the effect of nisin on the transcriptional response of virulence genes and the impact of these changes on the virulence of S. aureus can contribute to assessing the application of this bacteriocin in food and medical contexts.


Subject(s)
Anti-Bacterial Agents , Larva , Moths , Nisin , Staphylococcus aureus , Nisin/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Animals , Virulence/genetics , Larva/microbiology , Larva/drug effects , Anti-Bacterial Agents/pharmacology , Moths/microbiology , Staphylococcal Infections/microbiology , Gene Expression Regulation, Bacterial/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/genetics , Microbial Sensitivity Tests
2.
J Dairy Res ; 87(3): 382-385, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32883380

ABSTRACT

The research described in this technical research communication examines the hypothesis that sublethal stress conditions can improve the survival of Lactococcus lactis subsp. lactis during drying and subsequent storage. After drying, the L. lactis that had adapted to acid or osmotic stresses did not differ statistically in terms of cell viability loss compared to the control samples tested (~0.38 log cycles). However, the cells that had adapted to oxidative conditions demonstrated a cell viability loss of only 0.01 log cycles. After 45 d of storage at temperatures of 4 and 25 °C, the final L. lactis sample populations were shown to be higher (112.5%) when they had been submitted to sublethal conditions of oxidative stress. When the cell samples were exposed to acid stress conditions, they exhibited a viability loss (0.82 log cycles) that was statistically different from the control sample (0.58 log cycles) after 45 d. Osmotic stress conditions did not demonstrate any influence over cell survival rates. Thus, submitting cells to oxidative stress conditions prior to storage has been shown to be a potential strategy for producing dehydrated cultures of L. lactis strains that are less sensitive to oxygen exposure.


Subject(s)
Adaptation, Physiological/physiology , Lactococcus lactis/physiology , Oxidative Stress/physiology , Desiccation
3.
J Microbiol Methods ; 149: 67-72, 2018 06.
Article in English | MEDLINE | ID: mdl-29729311

ABSTRACT

Campylobacter jejuni is the most prevalent foodborne bacterial infection agent. This pathogen seems also involved in inflammatory bowel diseases in which pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), play a major role. C. jejuni pathogenicity has been extensively studied using in vitro cell culture methods, and more precisely "healthy" cells. In fact, no information is available regarding the behavior of C. jejuni in contact with TNFα-stimulated cells. Therefore, this research was designed to investigate the effect of TNFα on C. jejuni interaction with human intestinal epithelial cells (HT29 and HT29-MTX). To ensure IL-8 production induced by TNFα, human rtTNFα was added to HT29 and HT29-MTX before adhesion and invasion assays. About 108 CFU bacteria of C. jejuni strains cells were added to measure their adherence and invasion abilities using TNFα-stimulated cells versus non stimulated cells. Exposure to TNFα results in IL-8 overproduction by intestinal epithelial cells. In addition, the effect of TNFα pre-treatment on C. jejuni adhesion and internalization into eukaryotic cells is strain-dependent. Indeed, the adhesion/invasion process is affected in <50% of the strains tested when TNFα is added to the intestinal cells. Interestingly, TNFα affects more strains in their ability to adhere to and invade the mucus-secreting HT29-MTX cells. Among the 10 strains tested, the aero-tolerant C. jejuni Bf strain is one of the most virulent. These results suggest that the TNFα signalling pathway could participate in the internalization of C. jejuni in human intestinal cells and can help in understanding the pathogenicity of this microorganism in contact with TNFα-stimulated cells.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter jejuni/physiology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Host-Pathogen Interactions/physiology , Intestines/microbiology , Tumor Necrosis Factor-alpha/metabolism , Bacterial Adhesion/physiology , Campylobacter jejuni/pathogenicity , Cell Culture Techniques/methods , HT29 Cells , Humans , Inflammation , Interleukin-8/metabolism , Virulence
4.
J Microencapsul ; 34(8): 754-771, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29161939

ABSTRACT

Oils are used in agriculture, nutrition, food and cosmetics; however, these substances are oxidisable and may readily lose their properties. To reduce their degradation or to mask certain undesirable aspects, one strategy consists in encapsulating the oil in inert structures (capsules). The capsules are classified according to the morphology, the number of cores and size, can be produced by several techniques: jet-cutting, vibrating jet, spray-drying, dispersion and milli-microfluidic. Among the polymers used as a membrane in the capsules, alginates are used in oil encapsulation because of their high gelling capacity, biocompatibility and low toxicity. In the presence of calcium ions, the alginate macromolecules crosslink to form a three-dimensional network called hydrogel. The oil encapsulation using alginate as encapsulating material can be carried out using technologies based on the external, internal or inverse gelation mechanisms. These capsules can found applications in areas as cosmetics, textile, foods and veterinary, for example.


Subject(s)
Alginates/chemistry , Drug Compounding/methods , Emulsions/chemistry , Oils/administration & dosage , Capsules/chemistry , Drug Compounding/instrumentation , Equipment Design , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogels/chemistry , Lab-On-A-Chip Devices , Oils/chemistry , Oxidation-Reduction , Particle Size
5.
J Microencapsul ; 34(6): 522-534, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28792267

ABSTRACT

In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.


Subject(s)
Alginates/chemistry , Capsules , Emulsions/chemistry , Technology, Pharmaceutical , Drug Liberation , Gels , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Oils
6.
Methods Mol Biol ; 1512: 233-244, 2017.
Article in English | MEDLINE | ID: mdl-27885611

ABSTRACT

This chapter describes protocols used for two-dimensional electrophoretic analysis of the proteome or subproteome of Campylobacter jejuni, a major human food-borne pathogen. The following protocols, adapted to Campylobacter strains, include all the steps from cultivation to gel-support protein separation.


Subject(s)
Bacterial Proteins/isolation & purification , Campylobacter jejuni/chemistry , Electrophoresis, Gel, Two-Dimensional/methods , Electrophoresis, Polyacrylamide Gel/methods , Isoelectric Focusing/methods , Proteome/isolation & purification , Bacterial Proteins/classification , Bacterial Proteins/metabolism , Campylobacter jejuni/growth & development , Campylobacter jejuni/metabolism , Culture Media/chemistry , Densitometry , Dialysis , Electrophoresis, Gel, Two-Dimensional/instrumentation , Isoelectric Point , Proteome/metabolism , Silver Staining
7.
Front Microbiol ; 7: 1596, 2016.
Article in English | MEDLINE | ID: mdl-27790195

ABSTRACT

Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection.

8.
Front Microbiol ; 7: 1002, 2016.
Article in English | MEDLINE | ID: mdl-27446042

ABSTRACT

Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under aerobic atmosphere may result from the combination of insertions and mutations. In addition, the comparison of mRNA transcript levels of several genes targeted through genome analysis suggests the modification of regulatory processes in this strain.

9.
Gut Pathog ; 7: 30, 2015.
Article in English | MEDLINE | ID: mdl-26594244

ABSTRACT

BACKGROUND: Campylobacter jejuni is a leading cause of bacterial enteritis worldwide. This microaerophilic bacterium can survive in aerobic environments, suggesting it has protective mechanisms against oxidative stress. The clinical C. jejuni Bf strain is characterized by an increased resistance to oxygen. This study aimed to characterize the behavior of the clinical C. jejuni Bf strain under an aerobic atmosphere and in response to ROS-promoter agents. METHODS: Growth was studied in both aerobic and microaerobic conditions using classic cultivable methods. Electronic microscopy and mreB gene expression were used to evaluate the morphology of this strain under aerobic conditions. The survival under oxidative stress was tested in the presence of different concentrations of hydrogen peroxide (H2O2) and paraquat (PQ). RESULTS: The results showed that C. jejuni Bf strain can grow aerobically, unlike other strains of C. jejuni tested. Cells of C. jejuni Bf exposed to oxidative stress presented changes in morphology and the gene mreB, responsible for maintaining the bacillary cell morphology, was down-expressed. In aerobically acclimated conditions, C. jejuni Bf exhibited a higher survival rate of 52 % in the presence of H2O2 (1 mM) compared to the reference strain NCTC 11168. Concentrations above 1 mM PQ were lethal for the reference strain but not for C. jejuni Bf. CONCLUSIONS: Taken together, these data highlight the resistance to oxidative stress conditions of C. jejuni Bf, indicating that this microorganism seems more adapted to survival in hostile environmental conditions.

10.
Front Microbiol ; 6: 709, 2015.
Article in English | MEDLINE | ID: mdl-26217332

ABSTRACT

During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...