Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(8): e0183766, 2017.
Article in English | MEDLINE | ID: mdl-28837636

ABSTRACT

Reptiles are the first amniotes to develop an intromitent penis, however until now the mechanisms involved in the electrical field stimulation-induced contraction on corpora cavernosa isolated from Crotalus durissus terrificus were not investigated. Crotalus and rabbit corpora cavernosa were mounted in 10 mL organ baths for isometric tension recording. Electrical field stimulation (EFS)-induced contractions were performed in presence/absence of phentolamine (10 µM), guanethidine (30 µM), tetrodotoxin (1 µM and 1mM), A-803467 (10 µM), 3-iodo-L-Tyrosine (1 mM), salsolinol (3 µM) and a modified Krebs solution (equimolar substitution of NaCl by N-methyl-D-glucamine). Immuno-histochemistry for tyrosine hydroxylase was also performed. Electrical field stimulation (EFS; 8 Hz and 16 Hz) caused contractions in both Crotalus and rabbit corpora cavernosa. The contractions were abolished by previous incubation with either phentolamine or guanethidine. Tetrodotoxin (1 µM) also abolished the EFS-induced contractions of rabbit CC, but did not affect EFS-induced contractions of Crotalus CC. Addition of A-803467 (10 µM) did not change the EFS-induced contractions of Crotalus CC but abolished rabbit CC contractions. 3-iodo-L-Tyrosine and salsolinol had no effect on EFS-induced contractions of Crotalus CC and Rabbit CC. Replacement of NaCl by N- Methyl-D-glucamine (NMDG) abolished EFS-induced contractions of rabbit CC, but did not affect Crotalus CC. The presence of tyrosine hydroxylase was identified in endothelial cells only of Crotalus CC. Since the EFS-induced contractions of Crotalus CC is dependent on catecholamine release, insensitive to TTX, insensitive to A803467 and to NaCl replacement, it indicates that the source of cathecolamine is unlikely to be from adrenergic terminals. The finding that tyrosine hydroxylase is present in endothelial cells suggests that these cells can modulate Crotalus CC tone.


Subject(s)
Crotalus/physiology , Electric Stimulation , Penis/drug effects , Tetrodotoxin/pharmacology , Aniline Compounds/pharmacology , Animals , Callithrix , Furans/pharmacology , Immunohistochemistry , Male , Muscle Contraction/drug effects , Penis/physiology , Rabbits , Receptors, Adrenergic/physiology , Sodium Channels/physiology
2.
Am J Physiol Heart Circ Physiol ; 307(10): H1393-400, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25217652

ABSTRACT

Impairment of nitric oxide (NO)-mediated cavernosal relaxations in middle age contributes to erectile dysfunction. However, little information is available about the alterations of sympathetic neurotransmission and contraction in erectile tissue at middle age. This study aimed to evaluate the alterations of the contractile machinery associated with tyrosine hydroxylase (TH) in rat corpus cavernosum (RCC) at middle age, focusing on the role of superoxide anion. Male Wistar young (3.5-mo) and middle-aged (10-mo) rats were used. Electrical-field stimulation (EFS)- and phenylephrine-induced contractions were obtained in RCC strips. Levels of reactive-oxygen species (ROS) and TH mRNA expression, as well as protein expressions for α1/ß1-subunits of soluble guanylyl cyclase (sGC), in RCC were evaluated. The neurogenic contractile responses elicited by EFS (4-32 Hz) were greater in RCC from the middle-aged group that was accompanied by elevated TH mRNA expression (P < 0.01). Phenylephrine-induced contractions were also greater in the middle-aged group. A 62% increase in ROS generation in RCC from middle-aged rats was observed. The mRNA expression for the α1A-adrenoceptor remained unchanged among groups. Protein levels of α1/ß1-sGC subunits were decreased in RCC from the middle-aged compared with young group. The NADPH oxidase inhibitor apocynin (85 mg·rat(-1)·day(-1), 4 wk) fully restored the enhanced ROS production, TH mRNA expressions, and α1/ß1-subunit sGC expression, indicating that excess of superoxide anion plays a major role in the sympathetic hyperactivity and hypercontractility in erectile tissue at middle age. Reduction of oxidative stress by dietary antioxidants may be an interesting approach to treat erectile dysfunction in aging population.


Subject(s)
Aging/metabolism , Guanylate Cyclase/metabolism , Impotence, Vasculogenic/physiopathology , Muscle Contraction , Muscle, Smooth/innervation , Oxidative Stress , Penile Erection , Penis/innervation , Receptors, Cytoplasmic and Nuclear/metabolism , Sympathetic Nervous System/physiopathology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Age Factors , Animals , Dose-Response Relationship, Drug , Down-Regulation , Electric Stimulation , Enzyme Inhibitors/pharmacology , Impotence, Vasculogenic/enzymology , Male , Muscle Contraction/drug effects , Muscle, Smooth/enzymology , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Penile Erection/drug effects , Penis/blood supply , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Adrenergic, alpha-1/metabolism , Soluble Guanylyl Cyclase , Superoxides , Sympathetic Nervous System/drug effects , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
3.
PLoS One ; 8(6): e66903, 2013.
Article in English | MEDLINE | ID: mdl-23840551

ABSTRACT

Most amniotes vertebrates have an intromittent organ to deliver semen. The reptile Sphenodon and most birds lost the ancestral penis and developed a cloaca-cloaca mating. Known as hemipenises, the copulatory organ of Squamata shows unique features between the amniotes intromittent organ. They are the only paired intromittent organs across amniotes and are fully inverted and encapsulated in the tail when not in use. The histology and ultrastructure of the hemipenes of Crotalus durissus rattlesnake is described as the evolutionary implications of the main features discussed. The organization of hemipenis of Crotalus durissus terrificus in two concentric corpora cavernosa is similar to other Squamata but differ markedly from the organization of the penis found in crocodilians, testudinata, birds and mammals. Based on the available data, the penis of the ancestral amniotes was made of connective tissue and the incorporation of smooth muscle in the framework of the sinusoids occurred independently in mammals and Crotalus durissus. The propulsor action of the muscle retractor penis basalis was confirmed and therefore the named should be changed to musculus hemipenis propulsor.The retractor penis magnus found in Squamata has no homology to the retractor penis of mammals, although both are responsible for the retraction of the copulatory organ.


Subject(s)
Crotalus/anatomy & histology , Evolution, Molecular , Animals , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...