Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(12): 18871-18887, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381317

ABSTRACT

Coherent programmable integrated photonics circuits have shown great potential as specialized hardware accelerators for deep learning tasks, which usually involve the use of linear matrix multiplication and nonlinear activation components. We design, simulate and train an optical neural network fully based on microring resonators, which shows advantages in terms of device footprint and energy efficiency. We use tunable coupled double ring structures as the interferometer components for the linear multiplication layers and modulated microring resonators as the reconfigurable nonlinear activation components. We then develop optimization algorithms to train the direct tuning parameters such as applied voltages based on the transfer matrix method and using automatic differentiation for all optical components.

2.
Small ; 16(5): e1906347, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31943782

ABSTRACT

Atomically thin transition metal dichalcogenides (TMDs) in their excited states can serve as exceptionally small building blocks for active optical platforms. In this scheme, optical excitation provides a practical approach to control light-TMD interactions via the photocarrier generation, in an ultrafast manner. Here, it is demonstrated that via a controlled generation of photocarriers the second-harmonic generation (SHG) from a monolayer MoS2 crystal can be substantially modulated up to ≈55% within a timeframe of ≈250 fs, a set of performance characteristics that showcases the promise of low-dimensional materials for all-optical nonlinear data processing. The combined experimental and theoretical study suggests that the large SHG modulation stems from the correlation between the second-order dielectric susceptibility χ(2) and the density of photoexcited carriers in MoS2 . Indeed, the depopulation of the conduction band electrons, at the vicinity of the high-symmetry K/K' points of MoS2 , suppresses the contribution of interband electronic transitions in the effective χ(2) of the monolayer crystal, enabling the all-optical modulation of the SHG signal. The strong dependence of the second-order optical response on the density of photocarriers reveals the promise of time-resolved nonlinear characterization as an alternative route to monitoring carrier dynamics in excited states of TMDs.

3.
Nano Lett ; 18(10): 6570-6576, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30207735

ABSTRACT

The advent of metasurfaces in recent years has ushered in a revolutionary means to manipulate the behavior of light on the nanoscale. The design of such structures, to date, has relied on the expertise of an optical scientist to guide a progression of electromagnetic simulations that iteratively solve Maxwell's equations until a locally optimized solution can be attained. In this work, we identify a solution to circumvent this conventional design procedure by means of a deep learning architecture. When fed an input set of customer-defined optical spectra, the constructed generative network generates candidate patterns that match the on-demand spectra with high fidelity. This approach reveals an opportunity to expedite the discovery and design of metasurfaces for tailored optical responses in a systematic, inverse-design manner.

4.
Nano Lett ; 18(9): 5544-5551, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30071164

ABSTRACT

All-optical modulation is an entangled part of ultrafast nonlinear optics with promising impacts on tunable optical devices in the future. Current advancements in all-optical control predominantly offer modulation by means of altering light intensity, while the ultrafast manipulation of other attributes of light have yet to be further explored. Here, we demonstrate the active modulation of the phase, polarization, and amplitude of light through the nonlinear modification of the optical response of a plasmonic crystal that supports subradiant, high Q, and polarization-selective resonance modes. The designed mode is exclusively accessible via TM-polarized light, which enables significant phase modulation and polarization conversion within the visible spectrum. To tailor the device performance in the time domain, we exploit the ultrafast transport dynamics of hot electrons at the interface of plasmonic metals and charge acceptor materials to facilitate an ultrafast switching speed. In addition, the operating wavelength of the proposed device can be tuned through the control of the in-plane momentum of light. Our work reveals the viability of dynamic phase and polarization control in plasmonic systems for all-optical switching and data processing.

6.
Adv Mater ; 30(9)2018 Mar.
Article in English | MEDLINE | ID: mdl-29333735

ABSTRACT

The optical Kerr nonlinearity of plasmonic metals provides enticing prospects for developing reconfigurable and ultracompact all-optical modulators. In nanostructured metals, the coherent coupling of light energy to plasmon resonances creates a nonequilibrium electron distribution at an elevated electron temperature that gives rise to significant Kerr optical nonlinearities. Although enhanced nonlinear responses of metals facilitate the realization of efficient modulation devices, the intrinsically slow relaxation dynamics of the photoexcited carriers, primarily governed by electron-phonon interactions, impedes ultrafast all-optical modulation. Here, femtosecond (≈190 fs) all-optical modulation in plasmonic systems via the activation of relaxation pathways for hot electrons at the interface of metals and electron acceptor materials, following an on-resonance excitation of subradiant lattice plasmon modes, is demonstrated. Both the relaxation kinetics and the optical nonlinearity can be actively tuned by leveraging the spectral response of the plasmonic design in the linear regime. The findings offer an opportunity to exploit hot-electron-induced nonlinearities for design of self-contained, ultrafast, and low-power all-optical modulators based on plasmonic platforms.

7.
Nano Lett ; 17(11): 7102-7109, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29072915

ABSTRACT

Conventional metallic mirrors flip the spin of a circularly polarized wave upon normal incidence by inverting the direction of the propagation vector. Altering or maintaining the spin state of light waves carrying data is a critical need to be met at the brink of photonic information processing. In this work, we report a chiral metamaterial mirror that strongly absorbs a circularly polarized wave of one spin state and reflects that of the opposite spin in a manner conserving the circular polarization. A circular dichroic response in reflection as large as ∼0.5 is experimentally observed in a near-infrared wavelength band. By imaging a fabricated pattern composed of the enantiomeric unit cells, we directly visualize the two key features of our engineered meta-mirrors, namely the chiral-selective absorption and the polarization preservation upon reflection. Beyond the linear regime, the chiral resonances enhance light-matter interaction under circularly polarized excitation, greatly boosting the ability of the metamaterial to perform chiral-selective signal generation and optical imaging in the nonlinear regime. Chiral meta-mirrors, exhibiting giant chiroptical responses and spin-selective near-field enhancement, hold great promise for applications in polarization sensitive electro-optical information processing and biosensing.

8.
Nat Commun ; 82017 02 27.
Article in English | MEDLINE | ID: mdl-28240288

ABSTRACT

Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation.

9.
Adv Mater ; 29(15)2017 Apr.
Article in English | MEDLINE | ID: mdl-28195440

ABSTRACT

Highly reproducible organometallic-halide-perovskite-based devices are fabricated by a manufacturing process, which is demonstrated. Various shapes that are hard to synthesize directly are fabricated, and many unique properties are achieved.The fabrication procedure is utilized to create a photodetector and the detection sensitivity is significantly improved. The results will bring revolutionary advancement to the future of lead-halide-perovskite-based optoelectronic devices.

10.
Adv Mater ; 27(29): 4377-83, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26095640

ABSTRACT

Chiral-selective non-linear optics and optoelectronic signal generation are demonstrated in an electrically active photonic metamaterial. The metamaterial reveals significant chiroptical responses in both harmonic generation and the photon drag effect, correlated to the resonance behavior in the linear regime. The multifunctional chiral metamaterial with dual electrical and optical functionality enables transduction of chiroptical responses to electrical signals for integrated photonics.

11.
Nat Mater ; 14(8): 807-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26076305

ABSTRACT

Metamaterials have enabled the realization of unconventional electromagnetic properties not found in nature, which provokes us to rethink the established rules of optics in both the linear and nonlinear regimes. One of the most intriguing phenomena in nonlinear metamaterials is 'backward phase-matching', which describes counter-propagating fundamental and harmonic waves in a negative-index medium. Predicted nearly a decade ago, this process is still awaiting a definitive experimental confirmation at optical frequencies. Here, we report optical measurements showing backward phase-matching by exploiting two distinct modes in a nonlinear plasmonic waveguide, where the real parts of the mode refractive indices are 3.4 and -3.4 for the fundamental and the harmonic waves respectively. The observed peak conversion efficiency at the excitation wavelength of ∼780 nm indicates the fulfilment of the phase-matching condition of k(2ω) = 2k(ω) and n(2ω) = -n(ω), where the coherent harmonic wave emerges along a direction opposite to that of the incoming fundamental light.

12.
Nat Nanotechnol ; 10(5): 387-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25895002
13.
Adv Mater ; 27(6): 1124-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25533019

ABSTRACT

The amplification of chirally modified, non-linear signals from quantum emitters is demonstrated by manipulating the geometric chirality of resonant plasmonic nanostructures. The chiral center of the metamaterial is opened and emitters occupy this light-confining and chirally sensitive region. Non-linear emission signals are enhanced by 40× that of the emitters not embedded in the metamaterial and display a 3× contrast for the opposite circular polarization.

14.
Nat Commun ; 5: 4680, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25109813

ABSTRACT

Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.

15.
Adv Mater ; 26(35): 6157-62, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25044304

ABSTRACT

A chiral metamaterial produces both distinguishable linear and non-linear resonant features when probed with left and right circularly polarized light. The material demonstrates a linear transmission contrast of 0.5 between left and right circular polarizations and a 20× contrast between second-harmonic responses from the two incident polarizations. Non-linear and linear response images probed with circularly polarized light show strongly defined contrast.


Subject(s)
Optical Imaging , Circular Dichroism , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...