Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 8(58): 97871-97889, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29228658

ABSTRACT

Hepatoblastomas are uncommon embryonal liver tumors accounting for approximately 80% of childhood hepatic cancer. We hypothesized that epigenetic changes, including DNA methylation, could be relevant to hepatoblastoma onset. The methylomes of eight matched hepatoblastomas and non-tumoral liver tissues were characterized, and data were validated in an independent group (11 hepatoblastomas). In comparison to differentiated livers, hepatoblastomas exhibited a widespread and non-stochastic pattern of global low-level hypomethylation. The analysis revealed 1,359 differentially methylated CpG sites (DMSs) between hepatoblastomas and control livers, which are associated with 765 genes. Hypomethylation was detected in hepatoblastomas for ~58% of the DMSs with enrichment at intergenic sites, and most of the hypermethylated CpGs were located in CpG islands. Functional analyses revealed enrichment in signaling pathways involved in metabolism, negative regulation of cell differentiation, liver development, cancer, and Wnt signaling pathway. Strikingly, an important overlap was observed between the 1,359 DMSs and the CpG sites reported to exhibit methylation changes through liver development (p<0.0001), with similar patterns of methylation in both hepatoblastomas and fetal livers compared to adult livers. Overall, our results suggest an arrest at early stages of liver cell differentiation, in line with the hypothesis that hepatoblastoma ontogeny involves the disruption of liver development. This genome-wide methylation dysfunction, taken together with a relatively small number of driver genetic mutations reported for both adult and pediatric liver cancers, shed light on the relevance of epigenetic mechanisms for hepatic tumorigenesis.

2.
Future Oncol ; 12(11): 1345-57, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27020340

ABSTRACT

AIM: This work evaluates a possible causative role for germline copy number variants (CNVs) in melanoma predisposition. PATIENTS & METHODS: A total of 41 melanoma-prone Brazilian patients were investigated for CNVs using 850K single nucleotide polymorphism arrays. RESULTS: Ten rare CNVs were identified in nine patients, comprising 54 known genes, mostly related to cancer. In silico analyses revealed gene enrichment for cellular development and growth, and proliferation, highlighting five genes directly associated with the melanoma phenotype (ANGPT1, IDH1, PDE5A, HIST1H1B and GCNT2). CONCLUSION: Patients harboring rare CNVs exhibited a decreased age of disease onset, in addition to an overall higher skin cancer predisposition. Our findings suggest that rare CNVs contribute to melanoma susceptibility, and should be taken into account when investigating cancer risk factors.


Subject(s)
DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Adult , Female , Germ-Line Mutation , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction , Retrospective Studies
3.
Tumour Biol ; 36(3): 1835-48, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25391423

ABSTRACT

Lymphovascular invasion (LVI) and histologic grade are clinical parameters of high prognostic value in breast cancer and indicate the level of tumor aggressiveness. Many studies have focused on the association of breast cancer subtypes with gene expression and chromosomal profiles, but considerably less genomic information is available regarding traditional prognostic factors such as histologic grade and LVI. We studied by array-CGH a group of 57 invasive ductal carcinomas of the breast to outline the DNA copy number aberration (CNA) profile linked to high histologic grades and LVI. Selected CNAs were validated using real-time quantitative PCR (qPCR). Furthermore, gene expression analysis was performed in a subset of 32 of these tumors, and findings were integrated with array-CGH data. Our findings indicated an accumulation of genomic alterations in high-grade breast tumors compared to low-grade samples. Grade III tumors showed higher number of CNAs and larger aberrations than low-grade tumors and displayed a wide range of chromosomal aberrations, which were mainly 5p, 8q, 10p, 17q12, and 19 gains, and 3p, 4, 5q proximal, 9p, 11p, 18q, and 21 losses. The presence of LVI, a well-established prognostic marker, was not significantly associated with increased genomic instability in comparison to breast tumors negative for LVI, considering the total number of chromosomal alterations. However, a slightly increase in the frequency of specific alterations could be detected in LVI-positive group, such as gains at 5p, 16p, 17q12, and 19, and losses at 8p, 11q, 18q, and 21. Three newly reported small-scale rearrangements were detected in high-risk tumors (LVI-positive grade III) harboring putative breast cancer genes (amplicons at 4q13.3 and 11p11.2, and a deletion at 12p12.3). Furthermore, gene expression analysis uncovered networks highlighting S100A8, MMP1, and MED1 as promising candidate genes involved in high-grade and LVI-positive tumors. In summary, a group of genomic regions could be associated with high-risk tumors, and expression analysis pinpointed candidate genes deserving further investigation. The data has shed some light on the molecular players involved in two highly relevant prognostic factors and may further add to the understanding of the mechanisms of breast cancer aggressiveness.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma/genetics , Carcinoma/pathology , Chromosome Aberrations , Female , Genomics/methods , Humans , Lymphatic Metastasis , Neoplasm Invasiveness , Retrospective Studies , Sequence Deletion
4.
Future Oncol ; 10(15): 2449-57, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25525853

ABSTRACT

AIM: Cytogenetic data of hepatoblastomas, a rare embryonal tumor of the liver, mostly consist of descriptions of whole-chromosome aneuploidies and large chromosome alterations. High-resolution cytogenetics may provide clues to hepatoblastoma tumorigenesis and indicate markers with clinical significance. PATIENTS & METHODS: We used array-CGH (180K) to screen for genomic imbalances in nine hepatoblastomas. Additionally, we investigated the expression pattern of selected genes exhibiting copy number changes. RESULTS: Analysis showed mainly whole-chromosome or chromosome-arm aneuploidies, but some focal aberrations were also mapped. Expression analysis of 48 genes mapped at one 10 Mb amplification at 2q24 revealed upregulation of DAPL1, ERMN, GALNT5, SCN1A and SCN3A in the set of tumors compared with differentiated livers. CONCLUSION: These genes appear as candidates for hepatoblastoma tumorigenesis.


Subject(s)
Chromosomes, Human, Pair 2/genetics , Hepatoblastoma/genetics , Liver Neoplasms/genetics , Aneuploidy , Chromosome Aberrations , Gene Expression , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Humans , Oncogenes , Retrospective Studies , Up-Regulation
5.
Exp Mol Pathol ; 97(3): 425-32, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25236571

ABSTRACT

Melanoma is a highly aggressive cancer, accounting for up to 75% of skin cancer deaths. A small proportion of melanoma cases can be ascribed to the presence of highly penetrant germline mutations, and approximately 40% of hereditary melanoma cases are caused by CDKN2A mutations. The current study sought to investigate whether the presence of germline CDKN2A mutations or the occurrence of cutaneous melanoma would result in constitutive genome-wide DNA methylation changes. The leukocyte methylomes of two groups of melanoma patients (those with germline CDKN2A mutations and those without CDKN2A mutations) were analyzed together with the profile of a control group of individuals. A pattern of DNA hypomethylation was detected in the CDKN2A-negative patients relative to both CDKN2A-mutated patients and controls. Additionally, we delineated a panel of 90 CpG sites that were differentially methylated in CDKN2A-mutated patients relative to controls. Although we identified a possible constitutive epigenetic signature in CDKN2A-mutated patients, the occurrence of reported SNPs at the detected CpG sites complicated the data interpretation. Thus, further studies are required to elucidate the impact of these findings on melanoma predisposition and their possible effect on the penetrance of CDKN2A mutations.


Subject(s)
DNA Methylation/genetics , Genes, p16 , Germ-Line Mutation , Leukocytes , Melanoma/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...