Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(20): 11949-11954, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30188682

ABSTRACT

This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (µPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with µPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(-) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3-) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on µPAD surface.


Subject(s)
Color , Colorimetry , Glucose/analysis , Microfluidic Analytical Techniques , Paper , Aspergillus niger/enzymology , Glucose/metabolism , Glucose Oxidase/metabolism , Optical Imaging , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...