Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609710

ABSTRACT

Although biofilm formation is a very effective mechanism to sustain bacterial life, it is detrimental in medical and industrial sectors. Current strategies to control biofilm proliferation are typically based on biocides, which exhibit a negative environmental impact. In the search for environmentally friendly solutions, nanotechnology opens the possibility to control the interaction between biological systems and colonized surfaces by introducing nanostructured coatings that have the potential to affect bacterial adhesion by modifying surface properties at the same scale. In this work, we present a study on the performance of graphene and hexagonal boron nitride coatings (h-BN) to reduce biofilm formation. In contraposition to planktonic state, we focused on evaluating the efficiency of graphene and h-BN at the irreversible stage of biofilm formation, where most of the biocide solutions have a poor performance. A wild Enterobacter cloacae strain was isolated, from fouling found in a natural environment, and used in these experiments. According to our results, graphene and h-BN coatings modify surface energy and electrostatic interactions with biological systems. This nanoscale modification determines a significant reduction in biofilm formation at its irreversible stage. No bactericidal effects were found, suggesting both coatings offer a biocompatible solution for biofilm and fouling control in a wide range of applications.

2.
Nano Lett ; 17(1): 97-103, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28026959

ABSTRACT

In this work we present unique signatures manifested by the local electronic properties of the topological surface state in Bi2Te3 nanostructures as the spatial limit is approached. We concentrate on the pure nanoscale limit (nanoplatelets) with spatial electronic resolution down to 1 nm. The highlights include strong dependencies on nanoplatelet size: (1) observation of a phase separation of Dirac electrons whose length scale decreases as the spatial limit is approached, and (2) the evolution from heavily n-type to lightly n-type surface doping as nanoplatelet thickness increases. Our results show a new approach to tune the Dirac point together with reduction of electronic disorder in topological insulator (TI) nanostructured systems. We expect our work will provide a new route for application of these nanostructured Dirac systems in electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL