Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8635, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31677291

ABSTRACT

RATIONALE: Methods for isomer discrimination by mass spectroscopy are of increasing interest. Here we describe the development of a three-dimensional ion trap for infrared multiple photon dissociation (IRMPD) spectroscopy that enables the acquisition of the infrared spectrum of selected ions in the gas phase. This system is suitable for the study of a myriad of chemical systems, including isomer mixtures. METHODS: A modified three-dimensional ion trap was coupled to a CO2 laser and an optical parametric oscillator/optical parametric amplifier (OPO/OPA) system operating in the range 2300 to 4000 cm-1 . Density functional theory vibrational frequency calculations were carried out to support spectral assignments. RESULTS: Detailed descriptions of the interface between the laser and the mass spectrometer, the hardware to control the laser systems, the automated system for IRMPD spectrum acquisition and data management are presented. The optimization of the crystal position of the OPO/OPA system to maximize the spectroscopic response under low-power laser radiation is also discussed. CONCLUSIONS: OPO/OPA and CO2 laser-assisted dissociation of gas-phase ions was successfully achieved. The system was validated by acquiring the IRMPD spectra of model species and comparing with literature data. Two isomeric alkaloids of high economic importance were characterized to demonstrate the potential of this technique, which is now available as an open IRMPD spectroscopy facility in Brazil.

2.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17705

ABSTRACT

A mild stereo- and regioselective Cu-catalyzed hydroboration method for the synthesis of (Z)-seleno-alkenyl boronates and (Z)-thio-alkenylboronates from internal alkynes in the presence of commercially available B2pin2 is presented. This highly selective transformation relies on the use of N-heterocyclic carbene (NHC) complex IPrCuCl as the active catalytic species. We also explore the functionalization of the alkenylboronates obtained via oxidation to give a -chalcogeno ketones, useful building blocks for the synthesis of more complex chalcogen-containing molecules.

3.
ChemCatChem, mai. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3055

ABSTRACT

A mild stereo- and regioselective Cu-catalyzed hydroboration method for the synthesis of (Z)-seleno-alkenyl boronates and (Z)-thio-alkenylboronates from internal alkynes in the presence of commercially available B2pin2 is presented. This highly selective transformation relies on the use of N-heterocyclic carbene (NHC) complex IPrCuCl as the active catalytic species. We also explore the functionalization of the alkenylboronates obtained via oxidation to give a -chalcogeno ketones, useful building blocks for the synthesis of more complex chalcogen-containing molecules.

4.
J Phys Chem A ; 123(38): 8179-8187, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31483645

ABSTRACT

Benzoxazine formation is a fundamental step in the preparation of polybenzoxazine resins, and a detailed description of the mechanism governing the formation of benzoxazine and side products is vital for improving the properties and performance of these resins. Determination of the nature and properties of reaction intermediates is not trivial. Therefore, a Mannich-type condensation of aniline, formaldehyde, and phenol was evaluated as a potential method to form benzoxazine. Coupling positive mode electrospray ionization mass spectrometry (ESI(+)-MS) with infrared multiple photon dissociation (IRMPD) spectroscopy allowed unambiguous determination of an iminium-based mechanism and the direct observation of iminium intermediates. The benzoxazine formation mechanism was indirectly confirmed by the observation of side products that are relevant to the polymerization step, and directly confirmed by the identification of four distinct reaction intermediates that were completely characterized by IRMPD spectroscopy. The benzoxazine monomer was also shown to undergo isomerization under standard ESI-MS analysis conditions, suggesting the presence of a mixture of three isomers during their usual ESI-MS analysis.

5.
ACS Omega ; 3(8): 9075-9085, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459042

ABSTRACT

Infrared photodissociation analyses are supported by theoretical calculations that allow a trustworthy interpretation of experimental spectra of gaseous ions. B3LYP calculations are the most prominent method used to model IR spectra, as detailed in our bibliographic survey. However, this and other commonly used methods are known to provide inaccurate energy values and geometries, especially when it comes to long-range interactions, such as intramolecular H-bonds, which show increased anharmonicity. Therefore, we evaluated some of the most commonly used density functional theory methods (B3LYP, CAM-B3LYP, and M06-2X) and basis sets (6-31+G(d,p), 6-311++G(d,p), 6-311++G(3df,2pd), aug-cc-pVDZ, and aug-cc-pVTZ), including anharmonicity and dispersion corrections. The results were compared to MP2 calculations and to experimental high-frequency (2000-4000 cm-1) IR multiphotonic dissociation (IRMPD) spectra of two protonated model molecules containing intramolecular hydrogen bonds: biotin and tryptophan. M06-2X/6-31+G(d,p) was shown to be the most cost-effective level of theory, whereas CAM-B3LYP was the most efficient method to describe the van der Waals interactions. The use of the dispersion correction D3, proposed by Grimme, improved the description of O-H vibrations involved in H-bonding but worsened the description of N-H stretches. Anharmonic calculations were shown to be extremely expensive when compared to other approaches. The efficiencies of well-established scaling factors (SFs) in opposition to sample-dependent SFs were also discussed and the use of fitted SFs were shown to be the most cost-effective approach to predict IRMPD spectra. M06-2X/6-31+G(d,p) and CAM-B3LYP/aug-cc-pVDZ were also tested against the fingerprint region. Our results suggest that these methods can also be used for analysis in this lower frequency range and should be regarded as the methods of choice for cost-effective IRMPD simulations rather than the ubiquitous B3LYP method, especially when further molecular properties are needed.

6.
ACS Omega ; 2(8): 4431-4439, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-31457735

ABSTRACT

Hypervalent tellurium compounds (telluranes) are promising therapeutical agents with negligible toxicities for some diseases in animal models. The C-Te bond of organotellurium compounds is commonly considered unstable, disfavoring their applicability in biological studies. In this study, the stability of a set of telluranes composed of an inorganic derivative and noncharged and charged organic derivatives was monitored in aqueous media with 1H, 13C, and 125Te NMR spectroscopy and high-resolution mass spectrometry. Organic telluranes were found to be remarkably resistant and stable to hydrolysis, whereas the inorganic tellurane AS101 is totally converted to the hydrolysis product, trichlorooxytellurate, [TeOCl 3 ]-, which was also observed in the hydrolysis of TeCl 4 . The noteworthy stability of organotelluranes in aqueous media makes them prone to further structure-activity relationship studies and to be considered for broad biological investigations.

7.
Molecules ; 20(5): 8168-80, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25961159

ABSTRACT

Chagas' disease is caused by a parasitic protozoan and affects the poorest population in the world, causing high mortality and morbidity. As a result of the toxicity and long duration of current treatments, the discovery of novel and more efficacious drugs is crucial. In this work, the hexane extract from seeds of Porcelia macrocarpa R.E. Fries (Annonaceae) displayed in vitro antitrypanosomal activity against trypomastigote forms of T. cruzi by the colorimetric MTT assay (IC50 of 65.44 µg/mL). Using chromatographic fractionation over SiO2, this extract afforded a fraction composed by one active compound (IC50 of 10.70 µg/mL), which was chemically characterized as 12,14-octadecadiynoic acid (macrocarpic acid). Additionally, two new inactive acetylene compounds (α,α'-dimacro-carpoyl-ß-oleylglycerol and α-macrocarpoyl-α'-oleylglycerol) were also isolated from the hexane extract. The complete characterization of the isolated compounds was performed by analysis of NMR and MS data as well as preparation of derivatives.


Subject(s)
Acetylene/pharmacology , Annonaceae/chemistry , Fatty Acids/pharmacology , Plant Extracts/pharmacology , Seeds/chemistry , Trypanosoma cruzi/drug effects , Acetylene/chemistry , Chagas Disease/drug therapy , Fatty Acids/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...