Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 46(1): 295-302, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34623556

ABSTRACT

The black-handed spider monkey (Ateles geoffroyi) is a platyrrhine primate distributed in southern Mexico, Central America, and part of South America. Two subspecies inhabit Mexico: Ateles geoffroyi vellerosus and Ateles geoffroyi yucatanensis, both threatened with extinction. Serological evidence of exposure of spider monkeys to various groups of parasites such as Trypanosoma cruzi in México and Leishmania spp. in Brazil has been reported. The genus Leishmania encompasses about 23 species of flagellate protozoa that are transmitted by the bite of females of Phlebotominae sand flies. These parasites cause a zoonotic disease called leishmaniasis, which generates skin, mucocutaneous and/or visceral manifestations. The aim of the present study was to demonstrate the presence of Leishmania sp. in spider monkeys from the Tuxtlas Biosphere Reserve, Veracruz, Mexico. Blood samples from 10 free- ranging specimens of A. geoffroyi yucatanensis and 11 specimens in captivity of A. geoffroyi vellerosus were collected and used. The samples were subjected to a conventional Polymerase Chain Reaction test for the identification of a 116 bp fragment of a region from the kinetoplast minicircle of the parasite. Our analyzes showed that 71.4% of the sampled animals had fragment sizes compatible with Leishmania spp. The implications involve the survival of the specimens and the possibility that these primates act as sentinels of the disease. Furthermore, it is the first report suggesting the presence of Leishmania spp. in A. geoffroyi vellerosus and A. geoffroyi yucatanensis in Veracruz, Mexico.


Subject(s)
Ateles geoffroyi , Atelinae , Leishmania , Animals , Brazil , Female , Leishmania/genetics , Mexico
2.
Pathogens ; 10(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429911

ABSTRACT

N-glycosylation has remained mostly unexplored in Piroplasmida, an order of tick-transmitted pathogens of veterinary and medical relevance. Analysis of 11 piroplasmid genomes revealed three distinct scenarios regarding N-glycosylation: Babesia sensu stricto (s.s.) species add one or two N-acetylglucosamine (NAcGlc) molecules to proteins; Theileria equi and Cytauxzoon felis add (NAcGlc)2-mannose, while B. microti and Theileria s.s. synthesize dolichol-P-P-NAcGlc and dolichol-P-P-(NAcGlc)2 without subsequent transfer to proteins. All piroplasmids possess the gene complement needed for the synthesis of the N-glycosylation substrates, dolichol-P and sugar nucleotides. The oligosaccharyl transferase of Babesia species, T. equi and C. felis, is predicted to be composed of only two subunits, STT3 and Ost1. Occurrence of short N-glycans in B. bovis merozoites was experimentally demonstrated by fluorescence microscopy using a NAcGlc-specific lectin. In vitro growth of B. bovis was significantly impaired by tunicamycin, an inhibitor of N-glycosylation, indicating a relevant role for N-glycosylation in this pathogen. Finally, genes coding for N-glycosylation enzymes and substrate biosynthesis are transcribed in B. bovis blood and tick stages, suggesting that this pathway is biologically relevant throughout the parasite life cycle. Elucidation of the role/s exerted by N-glycans will increase our understanding of these successful parasites, for which improved control measures are needed.

3.
Vet Parasitol ; 287: 109275, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33091630

ABSTRACT

Surface proteins bound to the cell membrane by glycosylphosphatidylinositol (GPI) anchors are considered essential for the survival of pathogenic protozoans. In the case of the tick-transmitted hemoparasite Babesia bovis, the most virulent causative agent of bovine babesiosis, the GPI-anchored proteome was recently unraveled by an in silico approach. In this work, one of the identified proteins, GASA-1 (GPI-Anchored Surface Antigen-1), was thoroughly characterized. GASA-1 is 179 aa long and has the characteristic features of a GPI-anchored protein, including a signal peptide, a hydrophilic core and a hydrophobic tail that harbors a GPI anchor signal. Transcriptomic analysis shows that it is expressed in pathogenic and attenuated B. bovis strains. Notably, the gasa-1 gene has syntenic counterparts in B. bigemina and B. ovata, which also encode GPI-anchored proteins. This is highly unusual since all piroplasmid GPI-anchored proteins described so far have been found to be species-specific. Sequencing of gasa-1 alleles from B. bovis geographical isolates originating from Argentina, USA, Brazil, Mexico and Australia showed over 98 % identity in both nucleotide and amino acid sequences. A recombinant form of GASA-1 (rGASA-1) was generated in E. coli and anti-rGASA-1 antibodies were raised in mice. Fixed and live immunofluorescence assays showed that GASA-1 is expressed in in vitro cultured B. bovis merozoites and surface-exposed. Moreover, incubation of B. bovis in vitro cultures with anti-GASA-1 antibodies partially, but significantly, reduced erythrocyte invasion, indicating that this protein bears neutralization-sensitive antibody epitopes. Splenocytes of rGASA-1-inoculated mice showed a specific proliferative response when exposed to the recombinant protein, indicating that GASA-1 bears T-cell epitopes. Finally, sera from a group of B. bovis-infected cattle reacted with the recombinant protein, demonstrating that GASA-1 is expressed during natural infection of bovines with B. bovis, and suggesting that it is immunodominant. The high degree of conservation among B. bovis isolates and the presence of syntenic genes in other Babesia species suggest a relevant role of GASA-1 and GASA-1-like proteins for parasite survival, especially considering that, due to their surface location, they are exposed to the selection pressure of the host immune system. The highlighted features of GASA-1 make it an interesting candidate for the development of vaccines against bovine babesiosis.

4.
Parasit Vectors ; 9(1): 577, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27842609

ABSTRACT

BACKGROUND: Babesia bovis is a tick-transmitted protozoan hemoparasite and the causative agent of bovine babesiosis, a potential risk to more than 500 million cattle worldwide. The vaccines currently available are based on attenuated parasites, which are difficult to produce, and are only recommended for use in bovines under one year of age. When used in older animals, these vaccines may cause life-threatening clinical symptoms and eventually death. The development of a multi-subunit recombinant vaccine against B. bovis would be attractive from an economic standpoint and, most importantly, could be recommended for animals of any age. In the present study, recombinant ectodomains of MSA-2a1, MSA-2b and MSA-2c antigens were expressed in Pichia pastoris yeast as secreted soluble peptides. RESULTS: The antigens were purified to homogeneity, and biochemically and immunologically characterized. A vaccine formulation was obtained by emulsifying a mixture of the three peptides with the adjuvant Montanide ISA 720, which elicited high IgG antibody titers against each of the above antigens. IgG antibodies generated against each MSA-antigen recognized merozoites and significantly inhibited the invasion of bovine erythrocytes. Cellular immune responses were also detected, which were characterized by splenic and lymph node CD4+ T cells producing IFN-γ and TNF-α upon stimulation with the antigens MSA-2a1 or MSA-2c. CONCLUSIONS: These data strongly suggest the high protective potential of the presented formulation, and we propose that it could be tested in vaccination trials of bovines challenged with B. bovis.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Antigens, Surface/immunology , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Membrane Proteins/immunology , Protozoan Proteins/immunology , Protozoan Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigens, Protozoan/genetics , Antigens, Surface/genetics , Cattle , Mannitol/administration & dosage , Mannitol/analogs & derivatives , Membrane Proteins/genetics , Oleic Acids/administration & dosage , Protozoan Proteins/genetics , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
5.
Parasitology ; : 1-30, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25068315

ABSTRACT

SUMMARY Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.

6.
Vet J ; 196(3): 550-1, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23183017

ABSTRACT

Liposomes prepared from total egg yolk lipid extracts were used to deliver experimental DNA vaccines to mice consisting of pCI-neo plasmids encoding bovine herpesvirus type 1 (BoHV-1) gD or Babesia bovis MSA-2c. A significantly higher proportion of mice in the B. bovis MSA-2c group, but not those in the BoHV-1 gD group, developed detectable immunoglobulin G responses when vaccinated with liposome encapsulated DNA in comparison with mice vaccinated with naked DNA. In both groups, antibody titres were similar between mice vaccinated with liposome encapsulated DNA and naked DNA.


Subject(s)
Babesia bovis/immunology , Egg Yolk/chemistry , Herpesvirus 1, Bovine/classification , Herpesvirus 1, Bovine/immunology , Liposomes/chemistry , Viral Vaccines/immunology , Animals , Antibodies, Protozoan , Antibodies, Viral , Antigens, Protozoan/immunology , Babesiosis/parasitology , Babesiosis/prevention & control , Babesiosis/veterinary , Female , Herpesviridae Infections/prevention & control , Male , Membrane Proteins/immunology , Mice , Mice, Inbred BALB C , Protozoan Proteins/immunology , Viral Proteins/immunology
7.
Infect Genet Evol ; 12(8): 1788-809, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22871652

ABSTRACT

Babesia are tick-transmitted hemoprotozooans that infect mammals and birds, and which are acknowledged for their major impact on farm and pet animal health and associated economic costs worldwide. Additionally, Babesia infections of wildlife can be fatal if associated with stressful management practices; and human babesiosis, also transmitted by blood transfusion, is an increasing public-health concern. Due to the huge diversity of species reported to serve as Babesia hosts, all vertebrates might be potential carriers, as long as they are adequate hosts for Babesia-vector ticks. We here provide a comprehensive overview of the most relevant Babesia species, and a discussion of the classical taxonomic criteria. Babesia, Cytauxzoon and Theileria parasites are closely related and collectively referred to as piroplasmids. A possible scenario for the history of piroplasmids is presented in the context of recent findings, and its implications for future research avenues are outlined. Phylogenetic trees of all available 18S rRNA and hsp70 genes were generated, based on which we present a thoroughly revised molecular classification, comprising five monophyletic Babesia lineages, one Cytauxzoon clade, and one Theileria clade. Updated 18S rRNA and beta-tubulin gene trees of the B. microti isolates agree with those previously reported. To reconcile estimates of the origin of piroplasmids and ticks (~300 Ma, respectively), and mammalian radiation (60 Ma), we hypothesize that the dixenous piroplasmid life cycle evolved with the origin of ticks. Thus, the observed time gap between tick origin and mammalian radiation indicates the existence of hitherto unknown piroplasmid lineages and/or species in extant vertebrate taxa, including reptiles and possibly amphibians. The development and current status of the molecular taxonomy of Babesia, with emphasis on human-infecting species, is discussed. Finally, recent results from population genetic studies of Babesia parasites, and their implications for the development of pathogenicity, drug resistance and vaccines, are summarized.


Subject(s)
Babesia/isolation & purification , Babesiosis/parasitology , Animals , Arachnid Vectors , Babesia/classification , Babesia/genetics , Babesia/pathogenicity , Evolution, Molecular , Genetics, Population , Humans , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...