Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7981, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042923

ABSTRACT

Oral antivirals have the potential to reduce the public health burden of COVID-19. However, now that we have exited the emergency-phase of the COVID-19 pandemic, declining SARS-CoV-2 clinical testing rates (average testing rates = [Formula: see text]10 tests/100,000 people/day in low-and-middle income countries; <100 tests/100,000 people/day in high-income countries; September 2023) make the development of effective test-and-treat programs challenging. We used an agent-based model to investigate how testing rates and strategies affect the use and effectiveness of oral antiviral test-to-treat programs in four country archetypes of different income levels and demographies. We find that in the post-emergency-phase of the pandemic, in countries where low testing rates are driven by limited testing capacity, significant population-level impact of test-and-treat programs can only be achieved by both increasing testing rates and prioritizing individuals with greater risk of severe disease. However, for all countries, significant reductions in severe cases with antivirals are only possible if testing rates were substantially increased with high willingness of people to seek testing. Comparing the potential population-level reductions in severe disease outcomes of test-to-treat programs and vaccination shows that test-and-treat strategies are likely substantially more resource intensive requiring very high levels of testing (≫100 tests/100,000 people/day) and antiviral use suggesting that vaccination should be a higher priority.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Pandemics/prevention & control , Public Health , Antiviral Agents/therapeutic use , COVID-19 Testing
2.
Nat Genet ; 55(1): 26-33, 2023 01.
Article in English | MEDLINE | ID: mdl-36624344

ABSTRACT

The first step in SARS-CoV-2 genomic surveillance is testing to identify people who are infected. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (mean = 27 tests per 100,000 people per day). We simulated COVID-19 epidemics in a prototypical low- and middle-income country to investigate how testing rates, sampling strategies and sequencing proportions jointly impact surveillance outcomes, and showed that low testing rates and spatiotemporal biases delay time to detection of new variants by weeks to months and can lead to unreliable estimates of variant prevalence, even when the proportion of samples sequenced is increased. Accordingly, investments in wider access to diagnostics to support testing rates of approximately 100 tests per 100,000 people per day could enable more timely detection of new variants and reliable estimates of variant prevalence. The performance of global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to diagnostic testing.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Genomics , Diagnostic Techniques and Procedures , COVID-19 Testing
3.
medRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-36238715

ABSTRACT

Oral antivirals have the potential to reduce the public health burden of COVID-19. However, now that we have exited the emergency phase of the COVID-19 pandemic, declining SARS-CoV-2 clinical testing rates (average testing rates = ≪10 tests/100,000 people/day in low- and-middle income countries; <100 tests/100,000 people/day in high-income countries; September 2023) make the development of effective test-and-treat programs challenging. We used an agent-based model to investigate how testing rates and strategies affect the use and effectiveness of oral antiviral test-to-treat programs in four country archetypes of different income levels and demographies. We find that in the post-emergency phase of the pandemic, in countries where low testing rates are driven by limited testing capacity, significant population-level impact of test-and-treat programs can only be achieved by both increasing testing rates and prioritizing individuals with greater risk of severe disease. However, for all countries, significant reductions in severe cases with antivirals are only possible if testing rates were substantially increased with high willingness of people to seek testing. Comparing the potential population-level reductions in severe disease outcomes of test-to-treat programs and vaccination shows that test-and-treat strategies are likely substantially more resource intensive requiring very high levels of testing (>>100 tests/100,000 people/day) and antiviral use suggesting that vaccination should be a higher priority.

4.
medRxiv ; 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35664998

ABSTRACT

The first step in SARS-CoV-2 genomic surveillance is testing to identify infected people. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (LMICs) (mean = 27 tests/100,000 people/day). We simulated COVID-19 epidemics in a prototypical LMIC to investigate how testing rates, sampling strategies, and sequencing proportions jointly impact surveillance outcomes and showed that low testing rates and spatiotemporal biases delay time-to-detection of new variants by weeks-to-months and can lead to unreliable estimates of variant prevalence even when the proportion of samples sequenced is increased. Accordingly, investments in wider access to diagnostics to support testing rates of ~100 tests/100,000 people/day could enable more timely detection of new variants and reliable estimates of variant prevalence. The performance of global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to diagnostic testing.

5.
Sci Transl Med ; 11(515)2019 10 23.
Article in English | MEDLINE | ID: mdl-31645455

ABSTRACT

Improved tuberculosis (TB) prevention and control depend critically on the development of a simple, readily accessible rapid triage test to stratify TB risk. We hypothesized that a blood protein-based host response signature for active TB (ATB) could distinguish it from other TB-like disease (OTD) in adult patients with persistent cough, thereby providing a foundation for a point-of-care (POC) triage test for ATB. Three adult cohorts consisting of ATB suspects were recruited. A bead-based immunoassay and machine learning algorithms identified a panel of four host blood proteins, interleukin-6 (IL-6), IL-8, IL-18, and vascular endothelial growth factor (VEGF), that distinguished ATB from OTD. An ultrasensitive POC-amenable single-molecule array (Simoa) panel was configured, and the ATB diagnostic algorithm underwent blind validation in an independent, multinational cohort in which ATB was distinguished from OTD with receiver operator characteristic-area under the curve (ROC-AUC) of 0.80 [95% confidence interval (CI), 0.75 to 0.85], 80% sensitivity (95% CI, 73 to 85%), and 65% specificity (95% CI, 57 to 71%). When host antibodies against TB antigen Ag85B were added to the panel, performance improved to 86% sensitivity and 69% specificity. A blood-based host response panel consisting of four proteins and antibodies to one TB antigen can help to differentiate ATB from other causes of persistent cough in patients with and without HIV infection from Africa, Asia, and South America. Performance characteristics approach World Health Organization (WHO) target product profile accuracy requirements and may provide the foundation for an urgently needed blood-based POC TB triage test.


Subject(s)
Cough/diagnosis , Triage/methods , Tuberculosis, Pulmonary/diagnosis , Antibodies, Bacterial/analysis , Cough/microbiology , Cough/pathology , Humans , Machine Learning , Point-of-Care Systems , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
6.
Gates Open Res ; 2: 23, 2018.
Article in English | MEDLINE | ID: mdl-30234193

ABSTRACT

Background: Funding for neglected disease product development fell from 2009-2015, other than a brief injection of Ebola funding. One impediment to mobilizing resources is a lack of information on product candidates, the estimated costs to move them through the pipeline, and the likelihood of specific launches. This study aimed to help fill these information gaps. Methods: We conducted a pipeline portfolio review to identify current candidates for 35 neglected diseases. Using an adapted version of the Portfolio to Impact financial modelling tool, we estimated the costs to move these candidates through the pipeline over the next decade and the likely launches. Since the current pipeline is unlikely to yield several critical products, we estimated the costs to develop a set of priority "missing" products. Results: We found 685 neglected disease product candidates as of August 31, 2017; 538 candidates met inclusion criteria for input into the model. It would cost about $16.3 billion (range $13.4-19.8B) to move these candidates through the pipeline, with three-quarters of the costs incurred in the first 5 years, resulting in about 128 (89-160) expected product launches.  Based on the current pipeline, there would be few launches of complex new chemical entities; launches of highly efficacious HIV, tuberculosis, or malaria vaccines would be unlikely. Estimated additional costs to launch one of each of 18 key missing products are $13.6B assuming lowest product complexity or $21.8B assuming highest complexity ($8.1B-36.6B). Over the next 5 years, total estimated costs to move current candidates through the pipeline and develop these 18 missing products would be around $4.5B (low complexity missing products) or $5.8B/year (high complexity missing products). Conclusions: Since current annual global spending on product development is about $3B, this study suggests the annual funding gap over the next 5 years is at least $1.5-2.8B.

SELECTION OF CITATIONS
SEARCH DETAIL
...