Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Sci Rep ; 14(1): 15973, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987366

ABSTRACT

This EEG study aims at dissecting the differences in the activation of neural generators between borderline personality disorder patients with court-ordered measures (BDL-COM) and healthy controls in visual perspective taking. We focused on the distinction between mentalizing (Avatar) and non-mentalizing (Arrow) stimuli as well as self versus other-perspective in the dot perspective task (dPT) in a sample of 15 BDL-COM cases and 54 controls, all of male gender. BDL-COM patients showed a late and diffuse right hemisphere involvement of neural generators contrasting with the occipitofrontal topography observed in controls. For Avatars only and compared to controls, the adoption of Self perspective involved a lower EEG activity in the left inferior frontal, right middle temporal cortex and insula in BDL-COM patients prior to 80 ms post-stimulus. When taking the Other-perspective, BDL-COM patients also showed a lower activation of superior frontal, right inferior temporal and fusiform cortex within the same time frame. The beta oscillation power was significantly lower in BDL-COM patients than controls between 400 and 1300 ms post stimulus in the Avatar-Other condition. These results indicate that BDL-COM patients display both altered topography of EEG activation patterns and reduced abilities to mobilize beta oscillations during the treatment of mentalistic stimuli in dPT.


Subject(s)
Electroencephalography , Humans , Male , Adult , Borderline Personality Disorder/physiopathology , Borderline Personality Disorder/psychology , Case-Control Studies , Young Adult , Visual Perception/physiology
2.
Article in English | MEDLINE | ID: mdl-38861183

ABSTRACT

INTRODUCTION: Amyloid-ß (Aß) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([18F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [18F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients. METHODS: A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([18F]FBP) or Fluorine-18 Flutemetamol ([18F]FMM), and an [18F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [18F]FDG from early phase [18F]FBP and [18F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [18F]FDG as well as eFBP/eFMM to actual [18F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [18F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([18F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [18F]FDG PET and synthetic [18F]FDG PET hypometabolic binary maps. RESULTS: The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [18F]FDG images are quite similar to the actual [18F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [18F]FDG (eFBP: slope = 0.77, R2 = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R2 = 0.61, P-value < 0.0001). This correlation improved for synthetic [18F]FDG (synthetic [18F]FDG generated from eFBP (slope = 1.00, R2 = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R2 = 0.72, P-value < 0.0001)). CONCLUSION: We proposed a DL model for generating the [18F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [18F]FDG PET normal reference databases for data analysis.

3.
Front Hum Neurosci ; 18: 1374625, 2024.
Article in English | MEDLINE | ID: mdl-38770397

ABSTRACT

Introduction: Wide use of facemasks is one of the many consequences of the COVID-19 pandemic. Methods: We used an established working memory n-back task in functional magnetic resonance imaging (fMRI) to explore whether wearing a KN95/FFP2 facemask affects overall performance and brain activation patterns. We provide here a prospective crossover design 3 T fMRI study with/without wearing a tight FFP2/KN95 facemask, including 24 community-dwelling male healthy control participants (mean age ± SD = 37.6 ± 12.7 years) performing a 2-back task. Data analysis was performed using the FSL toolbox, performing both task-related and functional connectivity independent component analyses. Results: Wearing an FFP2/KN95 facemask did not impact behavioral measures of the 2-back task (response time and number of errors). The 2-back task resulted in typical activations in working-memory related areas in both MASK and NOMASK conditions. There were no statistically significant differences in MASK versus NOMASK while performing the 2-back task in both task-related and functional connectivity fMRI analyses. Conclusion: The effect of wearing a tight FFP2/KN95 facemasks did not significantly affect working memory performance and brain activation patterns of functional connectivity.

4.
Front Aging Neurosci ; 15: 1242158, 2023.
Article in English | MEDLINE | ID: mdl-38020768

ABSTRACT

The occurrence of significant Alzheimer's disease (AD) pathology was described in approximately 30% of normal pressure hydrocephalus (NPH) cases, leading to the distinction between neurodegenerative and idiopathic forms of this disorder. Whether or not there is a specific MRI signature of NPH remains a matter of debate. The present study focuses on asymptomatic cases at risk for NPH as defined with automatic machine learning tools and combines automatic MRI assessment of cortical and white matter volumetry, risk of AD (AD-RAI), and brain age gap estimation (BrainAge). Our hypothesis was that brain aging and AD process-independent volumetric changes occur in asymptomatic NPH-positive cases. We explored the volumetric changes in normal aging-sensitive (entorhinal cortex and parahippocampal gyrus/PHG) and AD-signature areas (hippocampus), four control cortical areas (frontal, parietal, occipital, and temporal), and cerebral and cerebellar white matter in 30 asymptomatic cases at risk for NPH (NPH probability >30) compared to 30 NPH-negative cases (NPH probability <5) with preserved cognition. In univariate regression models, NPH positivity was associated with decreased volumes in the hippocampus, parahippocampal gyrus (PHG), and entorhinal cortex bilaterally. The strongest negative association was found in the left hippocampus that persisted when adjusting for AD-RAI and Brain Age values. A combined model including the three parameters explained 36.5% of the variance, left hippocampal volumes, and BrainAge values, which remained independent predictors of the NPH status. Bilateral PHG and entorhinal cortex volumes were negatively associated with NPH-positive status in univariate models but this relationship did not persist when adjusting for BrainAge, the latter remaining the only predictor of the NPH status. We also found a negative association between bilateral cerebral and cerebellar white matter volumes and NPH status that persisted after controlling for AD-RAI or Brain Age values, explaining between 50 and 65% of its variance. These observations support the idea that in cases at risk for NPH, as defined by support vector machine assessment of NPH-related MRI markers, brain aging-related and brain aging and AD-independent volumetric changes coexist. The latter concerns volume loss in restricted hippocampal and white matter areas that could be considered as the MRI signature of idiopathic forms of NPH.

5.
Front Behav Neurosci ; 17: 1206011, 2023.
Article in English | MEDLINE | ID: mdl-37465000

ABSTRACT

This high density EEG report dissects the neural processing in the visual perspective taking using four experimental comparisons (Arrow, Avatar and Self, Other). Early activation differences occurred between the Avatar and the Arrow condition in primary visual pathways concomitantly with alpha and beta phase locked responses predominant in the Avatar condition. In later time points, brain activation was stronger for the Avatar condition in paracentral lobule of frontal lobe. When taking the other's perspective, there was an increased recruitment of generators in the occipital and temporal lobes and later on in mentalizing and salience networks bilaterally before spreading to right frontal lobe subdivisions. Microstate analysis further supported late recruitment of the medial frontal gyrus and precentral lobule in this condition. Other perspective for the Avatar only showed a strong beta response located first in left occipito-temporal and right parietal areas, and later on in frontal lobes. Our EEG data support distinct brain processes for the Avatar condition with an increased recruitment of brain generators that progresses from primary visual areas to the anterior brain. Taking the other's perspective needs an early recruitment of neural processors in posterior areas involved in theory of mind with later involvement of additional frontal generators.

6.
Front Hum Neurosci ; 17: 1071676, 2023.
Article in English | MEDLINE | ID: mdl-37234603

ABSTRACT

Previous studies showed that neurotypical adults are able to engage in unconscious analyses of others' mental states in the context of automatic perspective taking and experience systematic difficulties when judging the conflicts between their own (Self) and another's (Other) perspective. Several functional MRI (fMRI) studies reported widespread activation of mentalizing, salience, and executive networks when adopting the Other compared to Self perspective. This study aims to explore whether cognitive and emotional parameters impact on brain reactivity in dot perspective task (dPT). We provide here an fMRI analysis based on individual z-scores in eighty-two healthy adults who underwent the Samson's dPT after detailed assessment of fluid intelligence, attention, levels of alexithymia and social cognition abilities. Univariate regression models were used to explore the association between brain activation patterns and psychological variables. There was a strong positive association between Wechsler Adult Intelligence Scale (WAIS) and fMRI z-scores in Self perspective. When the Other perspective is taken, Continuous Performance Test (CPT)-II parameters were negatively associated with fMRI z-scores. Individuals with higher Toronto Alexithymia scale (TAS) score and lower scores in mini-Social cognition and Emotional Assessment (SEA) displayed significantly higher egocentric interference-related fMRI z-scores. Our data demonstrate that brain activation when focusing on our own perspective depends on the levels of fluid intelligence. Decreased attentional recruitment and decreased inhibitory control affects the brain efforts to adopt the Other perspective. Egocentric interference-associated brain fMRI activation was less marked in cases with better empathy abilities but the opposite was true for persons who experience increased difficulties in the recognition of emotions.

7.
Sci Rep ; 13(1): 6793, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100844

ABSTRACT

In this functional MRI (fMRI) study on 82 healthy adults using the dot perspective task, inconsistency of perspectives was associated with a significant increase of the mean reaction time and number of errors both in Self and Other conditions. Unlike the Arrow (non-mentalizing), the Avatar (mentalizing) paradigm was characterized by the recruitment of parts of the mentalizing and salience networks. These data provide experimental evidence supporting the fMRI distinction between mentalizing and non-mentalizing stimuli. A widespread activation of classical theory of mind (ToM) areas but also of salience network and decision making areas was observed in the Other compared to Self-conditions. Compared to Self-Consistent, Self-Inconsistent trials were related to increased activation in the lateral occipital cortex, right supramarginal and angular gyrus as well as inferior, superior and middle frontal gyri. Compared to the Other-Consistent, Other-Inconsistent trials yielded strong activation in the lateral occipital cortex, precuneus and superior parietal lobule, middle and superior precentral gyri and left frontal pole. These findings reveal that altercentric interference relies on areas involved in self-other distinction, self-updating and central executive functions. In contrast, egocentric interference needs the activation of the mirror neuron system and deductive reasoning, much less related to pure ToM abilities.


Subject(s)
Brain Mapping , Brain , Adult , Humans , Brain/physiology , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Occipital Lobe/physiology , Frontal Lobe , Magnetic Resonance Imaging
8.
Eur Radiol Exp ; 6(1): 50, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36210391

ABSTRACT

BACKGROUND: The use of facemasks is one of the consequences of the coronavirus disease 2019 (COVID-19) pandemic. We used resting-state functional magnetic resonance imaging (fMRI) to search for subtle changes in brain functional connectivity, expected notably related to the high-level salience network (SN) and default mode network (DMN). METHODS: Prospective crossover design resting 3-T fMRI study with/without wearing a tight FFP2/KN95 facemask, including 23 community-dwelling male healthy controls aged 29.9 ± 6.9 years (mean ± standard deviation). Physiological parameters, respiration frequency, and heart rate were monitored. The data analysis was performed using the CONN toolbox. RESULTS: Wearing an FFP2/KN95 facemask did not impact respiration or heart rate but resulted in a significant reduction in functional connectivity between the SN as the seed region and the left middle frontal and precentral gyrus. No difference was found when the DMN, sensorimotor, visual, dorsal attention, or language networks were used as seed regions. In the absence of significant changes of physiological parameter respiration and heart rate, and in the absence of changes in lower-level functional networks, we assume that those subtle modifications are cognitive consequence of wearing facemasks. CONCLUSIONS: The effect of wearing a tight FFP2/KN95 facemask in men is limited to high-level functional networks. Using the SN as seed network, we observed subtle yet significant decreases between the SN and the left middle frontal and precentral gyrus. Our observations suggest that wearing a facemask may change the patterns of functional connectivity with the SN known to be involved in communication, social behavior, and self-awareness.


Subject(s)
Brain , COVID-19 , N95 Respirators , Adult , Brain/diagnostic imaging , Brain/physiology , COVID-19/prevention & control , Cross-Over Studies , Humans , Male , Prospective Studies
9.
J Nucl Med ; 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35863896

ABSTRACT

Background: Alzheimer's disease (AD) neuropathologic changes are ß-amyloid (Aß) deposition, pathologic tau, and neurodegeneration. Dual-phase amyloid-PET might be able to evaluate Aß deposition and neurodegeneration with a single tracer injection. Early-phase amyloid-PET scans provide a proxy for cerebral perfusion, which has shown good correlations with neural dysfunction measured through metabolic consumption, while the late frames depict amyloid distribution. Our study aims to assess the comparability between early-phase amyloid-PET scans and 18F-fluorodeoxyglucose (18F-FDG)-PET brain topography at the individual level, and their ability to discriminate patients. Methods: 166 subjects evaluated at the Geneva Memory Center, ranging from cognitively unimpaired to Mild Cognitive Impairment (MCI) and dementia, underwent early-phase amyloid-PET - using either 18F-florbetapir (eFBP) (n = 94) or 18F-flutemetamol (eFMM) (n = 72) - and 18F-FDG-PET. Aß status was assessed. Standardized uptake value ratios (SUVR) were extracted to evaluate the correlation of eFBP/eFMM and their respective 18F-FDG-PET scans. The single-subject procedure was applied to investigate hypometabolism and hypoperfusion maps and their spatial overlap by Dice coefficient. Receiver operating characteristic analyses were performed to compare the discriminative power of eFBP/eFMM, and 18F-FDG-PET SUVR in AD-related metaROI between Aß-negative healthy controls and cases in the AD continuum. Results: Positive correlations were found between eFBP/eFMM and 18F-FDG-PET SUVR independently of Aß status and Aß radiotracer (R>0.72, p<0.001). eFBP/eFMM single-subject analysis revealed clusters of significant hypoperfusion with good correspondence to hypometabolism topographies, independently of the underlying neurodegenerative patterns. Both eFBP/eFMM and 18F-FDG-PET SUVR significantly discriminated AD patients from controls in the AD-related metaROIs (AUCFBP = 0.888; AUCFMM=0.801), with 18F-FDG-PET performing slightly better, however not significantly (all p-value higher than 0.05), than others (AUCFDG=0.915 and 0.832 for subjects evaluated with 18F-FBP and 18F-FMM, respectively). Conclusion: The distribution of perfusion was comparable to that of metabolism at the single-subject level by parametric analysis, particularly in the presence of a high neurodegeneration burden. Our findings indicate that eFBP/eFMM imaging can replace 18F-FDG-PET imaging, as they reveal typical neurodegenerative patterns, or allow to exclude the presence of neurodegeneration. The finding shows cost-saving capacities of amyloid-PET and supports the routine use of the modality for individual classification in clinical practice.

10.
Front Psychol ; 13: 883929, 2022.
Article in English | MEDLINE | ID: mdl-35586238

ABSTRACT

Previous studies using the dot-perspective task postulated that people automatically take into account others' perspective even when it prevents them from achieving their own goals. This human ability may be of key importance for the ascription of mental states and social interactions. The cognitive and emotional determinants of automatic perspective taking (APT) is still matter of debate. To address this issue, we examined the performance in the Samson et al. APT task in 91 healthy adults who underwent a detailed neuropsychological testing including assessment of their general intelligence (Wechsler Adult Intelligence Scale, WAIS), attention and impulsivity (Conners' Continuous Performance Test-II, CPT-II), alexithymia (Toronto Alexithymia Scale, TAS), and measures of affective empathy and explicit theory of mind (Geneva Social Cognition Scale, GeSoCS, and mini-Social cognition and Emotional Assessment, mini-SEA). Univariate and multiple linear regression models (adjusted for age, gender, and education) were used to explore the association between mean reaction times (respectively, mean number of errors) in the APT task, and the CPT-II parameters, WAIS global score (as well as subscale scores), TAS, and GeSoCS and mini-SEA scores. Only the CPT-II parameters were significantly associated with the mean reaction times. Increased omissions, commissions, and detectability as well as hit reaction time standard error in CPT-II were all related to worse performances both in Self and Other conditions. The mean number of errors was negatively associated with the GeSoCS score. Among the variables studied, only CPT-II parameters had a significant impact on egocentric and altercentric interference. Neither global intelligence nor alexithymia have an effect on dot-perspective task performance. The present findings suggest that people with lower attentional resources and increased impulsivity display worse performances in the APT task and are less responsive to both egocentric and altercentric interference.

11.
Eur Radiol ; 32(11): 7833-7842, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35486172

ABSTRACT

OBJECTIVES: Established visual brain MRI markers for dementia include hippocampal atrophy (mesio-temporal atrophy MTA), white matter lesions (Fazekas score), and number of cerebral microbleeds (CMBs). We assessed whether novel quantitative, artificial intelligence (AI)-based volumetric scores provide additional value in predicting subsequent cognitive decline in elderly controls. METHODS: A prospective study including 80 individuals (46 females, mean age 73.4 ± 3.5 years). 3T MR imaging was performed at baseline. Extensive neuropsychological assessment was performed at baseline and at 4.5-year follow-up. AI-based volumetric scores were derived from 3DT1: Alzheimer Disease Resemblance Atrophy Index (AD-RAI), Brain Age Gap Estimate (BrainAGE), and normal pressure hydrocephalus (NPH) index. Analyses included regression models between cognitive scores and imaging markers. RESULTS: AD-RAI score at baseline was associated with Corsi (visuospatial memory) decline (10.6% of cognitive variability in multiple regression models). After inclusion of MTA, CMB, and Fazekas scores simultaneously, the AD-RAI score remained as the sole valid predictor of the cognitive outcome explaining 16.7% of its variability. Its percentage reached 21.4% when amyloid positivity was considered an additional explanatory factor. BrainAGE score was associated with Trail Making B (executive functions) decrease (8.5% of cognitive variability). Among the conventional MRI markers, only the Fazekas score at baseline was positively related to the cognitive outcome (8.7% of cognitive variability). The addition of the BrainAGE score as an independent variable significantly increased the percentage of cognitive variability explained by the regression model (from 8.7 to 14%). The addition of amyloid positivity led to a further increase in this percentage reaching 21.8%. CONCLUSIONS: The AI-based AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and number of CMBs. KEY POINTS: • AD-RAI score at baseline was associated with Corsi score (visuospatial memory) decline. • BrainAGE score was associated with Trail Making B (executive functions) decrease. • AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and number of CMBs.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Hydrocephalus, Normal Pressure , Aged , Female , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Artificial Intelligence , Atrophy/pathology , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Hydrocephalus, Normal Pressure/diagnostic imaging , Magnetic Resonance Imaging , Neuropsychological Tests , Prospective Studies
12.
J Alzheimers Dis ; 85(4): 1807-1817, 2022.
Article in English | MEDLINE | ID: mdl-34958019

ABSTRACT

BACKGROUND: Several studies postulated that personality is an independent determinant of cognitive trajectories in old age. OBJECTIVE: This study explores the impact of personality on widely used Alzheimer's disease (AD) and vascular imaging markers. METHODS: We examined the association between personality and three classical AD imaging markers (centiloid-based-amyloid load, MRI volumetry in hippocampus, and media temporal lobe atrophy), and two vascular MRI parameters (Fazekas score and number of cortical microbleeds) assessed at baseline and upon a 54-month-follow-up. Personality was assessed with the Neuroticism Extraversion Openness Personality Inventory-Revised. Regression models were used to identify predictors of imaging markers including sex, personality factors, presence of APOE ɛ4 allele and cognitive evolution over time. RESULTS: Cortical GM volumes were negatively associated with higher levels of Conscientiousness both at baseline and follow-up. In contrast, higher scores of Openness were related to better preservation of left hippocampal volumes in these two time points and negatively associated with medial temporal atrophy at baseline. Amyloid load was not affected by personality factors. Cases with higher Extraversion scores displayed higher numbers of cortical microbleeds at baseline. CONCLUSION: Personality impact on brain morphometry is detected only in some among the routinely used imaging markers. The most robust associations concern the positive role of high levels of Conscientiousness and Openness on AD-signature MRI markers. Higher extraversion levels are associated with increased vulnerability to cortical microbleeds pointing to the fact that the socially favorable traits may have a detrimental effect on brain integrity in old age.


Subject(s)
Alzheimer Disease/pathology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Personality Inventory , Personality/physiology , Positron-Emission Tomography , Aged , Atrophy/pathology , Brain/pathology , Female , Hippocampus/pathology , Humans , Male , Neuropsychological Tests , Temporal Lobe/pathology
13.
Curr Alzheimer Res ; 18(6): 482-491, 2021.
Article in English | MEDLINE | ID: mdl-34602046

ABSTRACT

BACKGROUND: The determinants of the progressive decrement of cognition in normal aging are still a matter of debate. Alzheimer disease (AD)-signature markers and vascular lesions, but also psychological variables such as personality factors, are thought to have an impact on the longitudinal trajectories of neuropsychological performances in healthy elderly individuals. OBJECTIVE: The current research aimed to identify the main determinants associated with cognitive trajectories in normal aging. METHODS: We performed a 4.5-year longitudinal study in 90 older community-dwellers coupling two neuropsychological assessments, medial temporal atrophy (MTA), number of cerebral microbleeds (CMB), and white matter hyperintensities (WMH) at inclusion, visual rating of amyloid and FDG PET at follow-up, and APOE genotyping. Personality factors were assessed at baseline using the NEO-PIR. Univariate and backward stepwise regression models were built to explore the association between the continuous cognitive score (CCS) and both imaging and personality variables. RESULTS: The number of strictly lobar CMB at baseline (4 or more) was related to a significant increase in the risk of cognitive decrement. In multivariable models, amyloid positivity was associated with a 1.73 unit decrease of the CCS at follow-up. MTA, WMH and abnormal FDG PET were not related to the cognitive outcome. Among personality factors, only higher agreeableness was related to better preservation of neuropsychological performances. CONCLUSION: CMB and amyloid positivity are the only imaging determinants of cognitive trajectories in this highly selected series of healthy controls. Among personality factors, higher agreeableness confers a modest but significant protection against the decline of cognitive performances.


Subject(s)
Aging/physiology , Amyloid/metabolism , Cognition/physiology , Healthy Volunteers/statistics & numerical data , Independent Living , Neuropsychological Tests/statistics & numerical data , Aged , Aged, 80 and over , Atrophy/pathology , Cerebral Small Vessel Diseases/metabolism , Cohort Studies , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Personality , Positron-Emission Tomography
14.
Front Aging Neurosci ; 13: 664224, 2021.
Article in English | MEDLINE | ID: mdl-34322007

ABSTRACT

Quantitative imaging processing tools have been proposed to improve clinic-radiological correlations but their added value at the initial stages of cognitive decline is still a matter of debate. We performed a longitudinal study in 90 community-dwelling elders with three neuropsychological assessments during a 4.5 year follow-up period, and visual assessment of medial temporal atrophy (MTA), white matter hyperintensities, cortical microbleeds (CMB) as well as amyloid positivity, and presence of abnormal FDG-PET patterns. Quantitative imaging data concerned ROI analysis of MRI volume, amyloid burden, and FDG-PET metabolism in several AD-signature areas. Multiple regression models, likelihood-ratio tests, and areas under the receiver operating characteristic curve (AUC) were used to compare quantitative imaging markers to visual inspection. The presence of more or equal to four CMB at inclusion and slight atrophy of the right MTL at follow-up were the only parameters to be independently related to the worst cognitive score explaining 6% of its variance. This percentage increased to 24.5% when the ROI-defined volume loss in the posterior cingulate cortex, baseline hippocampus volume, and MTL metabolism were also considered. When binary classification of cognition was made, the area under the ROC curve increased from 0.69 for the qualitative to 0.79 for the mixed imaging model. Our data reveal that the inclusion of quantitative imaging data significantly increases the prediction of cognitive changes in elderly controls compared to the single consideration of visual inspection.

15.
Front Psychiatry ; 11: 552037, 2020.
Article in English | MEDLINE | ID: mdl-33312132

ABSTRACT

The mentalizing network (MN) treats social interactions based on our understanding of other people's intentions and includes the medial prefrontal cortex (mPFC), temporoparietal junction (TPJ), posterior cingulate cortex (PCC), precuneus (PC), and amygdala. Not all elders are equally affected by the aging-related decrease of mentalizing abilities. Personality has recently emerged as a strong determinant of functional connectivity in MN areas. However, its impact on volumetric changes across the MN in brain aging is still unknown. To address this issue, we explored the determinants of volume decrease in MN components including amyloid burden, personality, and APOE genotyping in a previously established cohort of 130 healthy elders with a mean follow-up of 54 months. Personality was assessed with the Neuroticism Extraversion Openness Personality Inventory-Revised. Regression models corrected for multiple comparisons were used to identify predictors of volume loss including time, age, sex, personality, amyloid load, presence of APOE epsilon 4 allele, and cognitive evolution. In cases with higher Agreeableness scores, there were lower volume losses in PCC, PC, and amygdala bilaterally. This was also the case for the right mPFC in elders displaying lower Agreeableness and Conscientiousness. In multiple regression models, the effect of Agreeableness was still observed in left PC and right amygdala and that of Conscientiousness was still observed in right mPFC volume loss (26.3% of variability, significant age and sex). Several Agreeableness (Modesty) and Conscientiousness (order, dutifulness, achievement striving, and self-discipline) facets were positively related to increased volume loss in cortical components of the MN. In conclusion, these data challenge the beneficial role of higher levels of Agreeableness and Conscientiousness in old age, showing that they are associated with an increased rate of volume loss within the MN.

16.
Sci Rep ; 10(1): 16665, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028945

ABSTRACT

Assessment of amyloid deposits is a critical step for the identification of Alzheimer disease (AD) signature in asymptomatic elders. Whether the different amyloid processing methods impacts on the quality of clinico-radiological correlations is still unclear. We directly compared in 155 elderly controls with extensive neuropsychological testing at baseline and 4.5 years follow-up three approaches: (i) operator-dependent standard visual reading, (ii) operator-independent automatic SUVR with four different reference regions, and (iii) novel operator and region of reference-independent automatic Aß-index. The coefficient of variance was used to examine inter-individual variability for each processing method. Using visually-established amyloid positivity as the gold standard, the area under the receiver operating characteristic curve (ROC) was computed. Linear regression models were used to assess the association between changes in continuous cognitive score and amyloid uptake values. In SUVR analyses, the coefficient of variance varied from 1.718 to 1.762 according to the area of reference and was of - 3.045 for the Aß-index method. Compared to the visual rating, Aß-index method showed the largest area under the ROC curve [0.9568 (95% CI 0.9252, 0.98833)]. The best cut-off score was of - 0.3359 with sensitivity and specificity values of 0.97 and 0.83, respectively. Only the Aß-index was related to more severe decrement of cognitive performances [regression coefficient: 9.103 (95% CI 1.148, 17.058)]. The Aß-index is considered as preferred option in asymptomatic elders, since it is operator-independent, avoids the selection of reference area, is closer to established visual scoring and correlates with the evolution of cognitive performances.


Subject(s)
Aging/metabolism , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Brain/diagnostic imaging , Peptide Fragments/metabolism , Positron-Emission Tomography/methods , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Biomarkers/metabolism , Brain/metabolism , Cognition/physiology , Female , Humans , Image Processing, Computer-Assisted , Male , Neuropsychological Tests , Sensitivity and Specificity
17.
J Alzheimers Dis ; 77(4): 1431-1442, 2020.
Article in English | MEDLINE | ID: mdl-32925053

ABSTRACT

BACKGROUND: The cognitive trajectories in normal aging may be affected by medial temporal atrophy (MTA) and amyloid burden, as well as vascular pathologies such as cortical microbleeds (CMB) and white matter hyperintensities (WMH). OBJECTIVE: We addressed here the role of imaging markers in their prediction in a real-world situation. METHODS: We performed a 4.5-year longitudinal study in 90 older community-dwellers coupling two neuropsychological assessments, MTA estimated with the Schelten's scale, number of CMB, and WMH evaluated with the Fazekas score at inclusion and follow-up, visual rating of amyloid PET and glucose hypometabolism at follow-up, and APOE genotyping. Regression models were built to explore the association between the continuous cognitive score (CCS) and imaging parameters. RESULTS: The number of strictly lobar CMB at baseline (4 or more) was related to a 5.5-fold increase of the risk of cognitive decrement. This association persisted in multivariable models explaining 10.6% of the CCS decrease variance. MTA, and Fazekas score at baseline and amyloid positivity or abnormal FDG PET, were not related to the cognitive outcome. The increase of right MTA at follow-up was the only correlate of CCS decrease both in univariate and multivariable models explaining 9.2% of its variance. CONCLUSION: The present data show that the accumulation of more than four CMB is associated with significant cognitive decrement over time in highly educated elderly persons. They also reveal that the progressive deterioration of cognitive performance within the age-adjusted norms is also related to the increase of visually assessed MTA.


Subject(s)
Aging/metabolism , Cerebral Hemorrhage/metabolism , Magnetic Resonance Imaging/trends , Microvessels/metabolism , Positron-Emission Tomography/trends , Temporal Lobe/metabolism , Aged , Aged, 80 and over , Aging/pathology , Atrophy , Cerebral Hemorrhage/diagnostic imaging , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Microvessels/diagnostic imaging , Temporal Lobe/diagnostic imaging
18.
Neurobiol Aging ; 89: 24-31, 2020 05.
Article in English | MEDLINE | ID: mdl-32169357

ABSTRACT

The relationship between personality profiles and brain integrity in old age is still a matter of debate. We examined the association between Big Five factor and facet scores and MRI brain volume changes on a 54-month follow-up in 65 elderly controls with 3 neurocognitive assessments (baseline, 18 months, and 54 months), structural brain MRI (baseline and 54 months), brain amyloid PET during follow-up, and APOE genotyping. Personality was assessed with the Neuroticism Extraversion Openness Personality Inventory-Revised. Regression models were used to identify predictors of volume loss including time, age, sex, personality, amyloid load, presence of APOE ε4 allele, and cognitive evolution. Lower agreeableness factor scores (and 4 of its facets) were associated with lower volume loss in the hippocampus, entorhinal cortex, amygdala, mesial temporal lobe, and precuneus bilaterally. Higher openness factor scores (and 2 of its facets) were also associated with lower volume loss in the left hippocampus. Our findings persisted when adjusting for confounders in multivariable models. These data suggest that the combination of low agreeableness and high openness is an independent predictor of better preservation of brain volume in areas vulnerable to neurodegeneration.


Subject(s)
Amyloidogenic Proteins/metabolism , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Neuroimaging , Organ Size , Positron-Emission Tomography , Aged , Aged, 80 and over , Apolipoproteins E/genetics , Cognition , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Personality
19.
Neurobiol Aging ; 87: 108-114, 2020 03.
Article in English | MEDLINE | ID: mdl-32057528

ABSTRACT

Mesial temporal lobe (MTL) is prominently affected in normal aging and associated with neurodegeneration in AD. Whether or not MTL atrophy is dependent on increasing amyloid load before the emergence of cognitive deficits is still disputed. We performed a 4.5-year longitudinal study in 75 older community dwellers (48 women, mean age: 79.3 years) including magnetic resonance imaging at baseline and follow-up, positron emission tomography amyloid during follow-up, neuropsychological assessment at 18 and 55 months, and APOE genotyping. Linear regression models were used to identify predictors of the MTL volume loss. Amyloid load was negatively associated with bilateral MTL volume at baseline explaining almost 10.5% of its variability. In multivariate models including time of follow-up and demographic variables (older age, male gender), this percentage exceeded 35%. The APOE4 allele independently contributed another 6%. Cognitive changes had a modest but still significant negative association with MTL volume loss. Our data support a multifactorial model including amyloid deposition, older age, male gender, APOE4 allele, and slight decline of cognitive abilities as independent predictors of MTL volume loss in brain aging.


Subject(s)
Aging/pathology , Aging/psychology , Amyloidogenic Proteins/metabolism , Cognitive Reserve , Positron-Emission Tomography , Temporal Lobe/diagnostic imaging , Temporal Lobe/metabolism , Aged , Aged, 80 and over , Aging/metabolism , Alleles , Apolipoprotein E4/genetics , Female , Follow-Up Studies , Genotype , Humans , Longitudinal Studies , Male , Neuropsychological Tests , Organ Size , Sex Factors , Temporal Lobe/pathology
20.
Front Neurosci ; 13: 1228, 2019.
Article in English | MEDLINE | ID: mdl-31803008

ABSTRACT

BACKGROUND AND PURPOSE: Amyloid imaging, gray matter (GM) morphometry and diffusion tensor imaging (DTI) have all been used as predictive biomarkers in dementia. Our objective was to define the imaging profile of healthy elderly controls as a function of their cognitive trajectories and explore whether amyloid burden and white matter (WM) microstructure changes are associated with subtle decrement of neuropsychological performances in old age. MATERIALS AND METHODS: We performed a 4.5-year longitudinal study in 133 elderly individuals who underwent cognitive testing at inclusion and follow-up, amyloid PET, MRI including DTI sequences at inclusion, and APOE epsilon 4 genotyping. All cases were assessed using a continuous cognitive score (CCS) taking into account the global evolution of neuropsychological performances. Data processing included region of interest analysis of amyloid PET analysis, GM densities and tract-based spatial statistics (TBSS)-DTI. Regression models were built to explore the association between the CCS and imaging parameters controlling for significant demographic and clinical covariates. RESULTS: Amyloid uptake was not related to the cognitive outcome. In contrast, GM densities in bilateral hippocampus were associated with worst CCS at follow-up. In addition, radial and axial diffusivities in left hippocampus were negatively associated with CCS. Amyloid load was associated with decreased VBM and increased radial and axial diffusivity in the same area. These associations persisted when adjusting for gender and APOE4 genotype. Importantly, they were absent in amygdala and neocortical areas studied. CONCLUSION: The progressive decrement of neuropsychological performances in normal aging is associated with volume loss and WM microstructure changes in hippocampus long before the emergence of clinically overt symptoms. Higher amyloid load in hippocampus is compatible with cognitive preservation in cases with better preservation of GM densities and WM microstructure in this area.

SELECTION OF CITATIONS
SEARCH DETAIL
...