Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Integr Genomics ; 8(4): 387-405, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18512091

ABSTRACT

Low temperature and drought have major influences on plant growth and productivity. To identify barley genes involved in responses to these stresses and to specifically test the hypothesis that the dehydrin (Dhn) multigene family can serve as an indicator of the entire transcriptome response, we investigated the response of barley cv. Morex to: (1) gradual drought over 21 days and (2) low temperature including chilling, freeze-thaw cycles, and deacclimation over 33 days. We found 4,153 genes that responded to at least one component of these two stress regimes, about one fourth of all genes called "present" under any condition. About 44% (1,822 of 4,153) responded specifically to drought, whereas only 3.8% (158 of 4,153) were chilling specific and 2.8% (119 of 4,153) freeze-thaw specific, with 34.1% responsive to freeze-thaw and drought. The intersection between chilling and drought (31.9%) was somewhat smaller than the intersection between freeze-thaw and drought, implying an element of osmotic stress response to freeze-thaw. About 82.4% of the responsive genes were similar to Arabidopsis genes. The expression of 13 barley Dhn genes mirrored the global clustering of all transcripts, with specific combinations of Dhn genes providing an excellent indicator of each stress response. Data from these studies provide a robust reference data set for abiotic stress.


Subject(s)
Cold Temperature , Disasters , Gene Expression Regulation, Plant , Hordeum/genetics , Plant Proteins/genetics , Crops, Agricultural , Gene Expression Profiling , Hordeum/metabolism , Humans , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Plant Proteins/metabolism
2.
Mol Genet Genomics ; 274(5): 515-27, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16244872

ABSTRACT

More than 2,000 genome-wide barley single nucleotide polymorphisms (SNPs) were developed by resequencing unigene fragments from eight diverse accessions. The average genome-wide SNP frequency observed in 877 unigenes was 1 SNP per 200 bp. However, SNP frequency was highly variable with the least number of SNP and SNP haplotypes observed within European cultivated germplasm reflecting effects of breeding history on genetic diversity. More than 300 SNP loci were mapped genetically in three experimental mapping populations which allowed the construction of an integrated SNP map incorporating a large number of RFLP, AFLP and SSR markers (1,237 loci in total). The genes used for SNP discovery were selected based on their transcriptional response to a variety of abiotic stresses. A set of known barley abiotic stress QTL was positioned on the linkage map, while the available sequence and gene expression information facilitated the identification of genes potentially associated with these traits. Comparison of the sequenced SNP loci to the rice genome sequence identified several regions of highly conserved gene order providing a framework for marker saturation in barley genomic regions of interest. The integration of genome-wide SNP and expression data with available genetic and phenotypic information will facilitate the identification of gene function in barley and other non-model organisms.


Subject(s)
Genes, Plant , Genetic Linkage , Hordeum/genetics , Polymorphism, Single Nucleotide , Expressed Sequence Tags
3.
Plant Physiol ; 129(4): 1781-7, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12177491

ABSTRACT

Although cold and drought adaptation in cereals and other plants involve the induction of a large number of genes, inheritance studies in Triticeae (wheat [Triticum aestivum], barley [Hordeum vulgare], and rye [Secale cereale]) have revealed only a few major loci for frost or drought tolerance that are consistent across multiple genetic backgrounds and environments. One might imagine that these loci could encode highly conserved regulatory factors that have global effects on gene expression; therefore, genes encoding central regulators identified in other plants might be orthologs of these Triticeae stress tolerance genes. The CBF/DREB1 regulators, identified originally in Arabidopsis as key components of cold and drought regulation, merit this consideration. We constructed barley cDNA libraries, screened these libraries and a barley bacterial artificial chromosome library using rice (Oryza sativa) and barley Cbf probes, found orthologs of Arabidopsis CBF/DREB1 genes, and examined the expression and genetic map location of the barley Cbf3 gene, HvCbf3. HvCbf3 was induced by a chilling treatment. HvCbf3 is located on barley chromosome 5H between markers WG364b and saflp58 on the barley cv Dicktoo x barley cv Morex genetic linkage map. This position is some 40 to 50 cM proximal to the winter hardiness quantitative trait locus that includes the Vrn-1H gene, but may coincide with the wheat 5A Rcg1 locus, which governs the threshold temperature at which cor genes are induced. From this, it remains possible that HvCbf3 is the basis of a minor quantitative trait locus in some genetic backgrounds, though that possibility remains to be thoroughly explored.


Subject(s)
Arabidopsis Proteins , DNA-Binding Proteins/genetics , Hordeum/genetics , Plant Proteins/genetics , Trans-Activators/genetics , Amino Acid Sequence , Arabidopsis/genetics , Chromosome Mapping , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Molecular Sequence Data , Oryza/genetics , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Trans-Activators/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...