Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 33(46): 18047-64, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24227716

ABSTRACT

Different modulatory inputs commonly elicit distinct rhythmic motor patterns from a central pattern generator (CPG), but they can instead elicit the same pattern. We are determining the rhythm-generating mechanisms in this latter situation, using the gastric mill (chewing) CPG in the crab (Cancer borealis) stomatogastric ganglion, where stimulating the projection neuron MCN1 (modulatory commissural neuron 1) or bath applying CabPK (C. borealis pyrokinin) peptide elicits the same gastric mill motor pattern, despite configuring different gastric mill circuits. In both cases, the core rhythm generator includes the same reciprocally inhibitory neurons LG (lateral gastric) and Int1 (interneuron 1), but the pyloric (food-filtering) circuit pacemaker neuron AB (anterior burster) is additionally necessary only for CabPK rhythm generation. MCN1 drives this rhythm generator by activating in the LG neuron the modulator-activated inward current (IMI), which waxes and wanes periodically due to phasic feedback inhibition of MCN1 transmitter release. Each buildup of IMI enables the LG neuron to generate a self-terminating burst and thereby alternate with Int1 activity. Here we establish that CabPK drives gastric mill rhythm generation by activating in the LG neuron IMI plus a slowly activating transient, low-threshold inward current (ITrans-LTS) that is voltage, time, and Ca(2+) dependent. Unlike MCN1, CabPK maintains a steady IMI activation, causing a subthreshold depolarization in LG that facilitates a periodic postinhibitory rebound burst caused by the regular buildup and decay of the availability of ITrans-LTS. Thus, different modulatory inputs can use different rhythm-generating mechanisms to drive the same neuronal rhythm. Additionally, the same ionic current (IMI) can play different roles under these different conditions, while different currents (IMI, ITrans-LTS) can play the same role.


Subject(s)
Action Potentials/physiology , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/physiology , Nerve Net/cytology , Nerve Net/physiology , Periodicity , Animals , Brachyura , Neurons/physiology , Organ Culture Techniques
2.
Anesthesiology ; 111(1): 15-24, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19546691

ABSTRACT

BACKGROUND: Chromosomal deletions and duplications, which result in halving or doubling of copy number in a block of genes, are an important source of variation between individuals. Phenotypic effects of copy number variation are commonly observed, but effects on sensitivity to volatile anesthetics have not been assessed in any organism. METHODS: The potency with which halothane depresses the righting reflex of fruit flies was measured in congenic Drosophila strains, each of which was heterozygous for a deletion of average size 400 kb. Over 200 strains were examined, thereby scanning approximately half of the fly genome. RESULTS: Although the vast majority of deletion heterozygotes were indistinguishable from the control, eight had significantly altered sensitivity to halothane. Genetic tests supported the hypothesis that the change in anesthetic sensitivity was the result of reduction in copy number and not adventitious mutations in the strains. Among the eight outliers, the difference in halothane potency ranged from a 25% increase to a 15% decrease. Changes of similar magnitude but distinctive patterns were found when these lines were tested with enflurane, isoflurane, and sevoflurane. CONCLUSIONS: Variation in gene copy number has a significant impact on anesthetic sensitivity in Drosophila melanogaster. The level of transcription of a few genes must thus be limiting for a normal response to volatiles. Coupling between gene copy and gene expression is universal, and the components of the fly's nervous system are highly conserved; therefore, this work provides a rationale for investigating the clinical impact of copy number variation.


Subject(s)
Anesthesia , Drosophila Proteins/genetics , Gene Dosage/genetics , Genetic Variation/genetics , Anesthesia/methods , Animals , Animals, Genetically Modified , Dose-Response Relationship, Drug , Drosophila melanogaster , Female , Gene Dosage/drug effects , Genetic Variation/drug effects , Halothane/pharmacology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...