Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Opt Mater ; 1(3): 753-758, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37007840

ABSTRACT

The optical properties of periodic metallic nanoparticle lattices have found many exciting applications. Indium is an emerging plasmonic material that offers to extend the plasmonic applications given by gold and silver from the visible to the ultraviolet spectral range, with applications in imaging, sensing, and lasing. Due to the high vapor pressure/low melting temperature of indium, nanofabrication of ordered metallic nanoparticles is nontrivial. In this work, we show the potential of selective area electrochemical deposition to generate large-area lattices of In pillars for plasmonic applications. We study the optical response of the In lattices by means of angle-dependent extinction measurements demonstrating strong plasmonic surface lattice resonances and a good agreement with numerical simulations. The results open avenues toward high-quality lattices of plasmonic indium nanoparticles and can be extended to other promising plasmonic materials that can be electrochemically grown.

2.
Phys Rev Lett ; 116(10): 103002, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27015478

ABSTRACT

We experimentally demonstrate the coherent control, i.e., phase-dependent enhancement and suppression, of the optical absorption in an array of metallic nanoantennas covered by a thin luminescent layer. The coherent control is achieved by using two collinear, counterpropagating, and phase-controlled incident waves with wavelength matching the absorption spectrum of dye molecules coupled to the array. Symmetry arguments shed light on the relation between the relative phase of the incident waves and the excitation efficiency of the optical resonances of the system. This coherent control is associated with a phase-dependent distribution of the electromagnetic near fields in the structure which enables a significant reduction of the unwanted dissipation in the metallic structures.

3.
Opt Express ; 24(2): A388-96, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832590

ABSTRACT

Periodic arrays of metallic nanoparticles can be used to enhance the emission of light in certain directions. We fabricated hexagonal arrays of aluminium nanoparticles combined with thin layers of luminescent material and optimized period (275 nm) and thickness (1500 nm) to obtain sideward directional emission into glass for a wavelength band around 620 nm. The key physics is that the luminescent layer acts as a waveguide, from which light is emitted at preferential angles using diffractive effects. This phenomenon has applications in the field of solid-state lighting, where there is a desire for small, bright and directional sources.

4.
Nano Lett ; 14(10): 5555-60, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25237822

ABSTRACT

A system comprising an aluminum nanoantenna array on top of a luminescent colloidal quantum dot waveguide and covered by a thermotropic liquid crystal (LC) is introduced. By heating the LC above its critical temperature, we demonstrate that the concomitant refractive index change modifies the hybrid plasmonic-photonic resonances in the system. This enables active control of the spectrum and directionality of the narrow-band (∼6 nm) enhancement of quantum dot photoluminescence by the metallic nanoantennas.

SELECTION OF CITATIONS
SEARCH DETAIL
...