Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328468

ABSTRACT

Pathogenic fungi can lose virulence after protracted periods of culture, but little is known of the underlying mechanisms. Here, we present the first analysis of DNA methylation flux at a single-base resolution for the plant pathogen B. cinerea and identify differentially methylated genes/genomic regions associated with virulence erosion during in vitro culture. Cultures were maintained for eight months, with subcultures and virulence testing every month. Methylation-sensitive amplified polymorphisms were performed at monthly intervals to characterise global changes to the pathogen's genome during culture and also on DNA from mycelium inoculated onto Arabidopsis thaliana after eight months in culture. Characterisation of culture-induced epialleles was assessed by whole-genome re-sequencing and whole-genome bisulfite sequencing. Virulence declined with time in culture and recovered after inoculation on A. thaliana. Variation detected by methylation-sensitive amplified polymorphisms followed virulence changes during culture. Whole-genome (bisulfite) sequencing showed marked changes in global and local methylation during culture but no significant genetic changes. We imply that virulence is a non-essential plastic character that is at least partly modified by the changing levels of DNA methylation during culture. We hypothesise that changing DNA methylation during culture may be responsible for the high virulence/low virulence transition in B. cinerea and speculate that this may offer fresh opportunities to control pathogen virulence.


Subject(s)
Arabidopsis , DNA Methylation , Arabidopsis/genetics , Arabidopsis/microbiology , Botrytis/genetics , Host-Pathogen Interactions/genetics , Virulence/genetics
2.
Hortic Res ; 7(1): 185, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33328450

ABSTRACT

Enset (Ensete ventricosum (Welw.) Cheesman) is a drought tolerant, vegetatively propagated crop that was domesticated in Ethiopia. It is a staple food for more than 20 million people in Ethiopia. Despite its current importance and immense potential, enset is among the most genetically understudied and underexploited food crops. We collected 230 enset wild and cultivated accessions across the main enset producing regions in Ethiopia and applied amplified fragment length polymorphism (AFLP) and genotype by sequencing (GBS) analyses to these accessions. Wild and cultivated accessions were clearly separated from each other, with 89 genes found to harbour SNPs that separated wild from cultivated accessions. Among these, 17 genes are thought to be involved in flower initiation and seed development. Among cultivated accessions, differentiation was mostly associated with geographical location and with proximity to wild populations. Our results indicate that vegetative propagation of elite clones has favoured capacity for vegetative growth at the expense of capacity for sexual reproduction. This is consistent with previous reports that cultivated enset tends to produce non-viable seeds and flowers less frequently than wild enset.

3.
Front Plant Sci ; 11: 553907, 2020.
Article in English | MEDLINE | ID: mdl-33013971

ABSTRACT

Environmental cues are known to alter the methylation profile of genomic DNA, and thereby change the expression of some genes. A proportion of such modifications may become adaptive by adjusting expression of stress response genes but others have been shown to be highly stochastic, even under controlled conditions. The influence of environmental flux on plants adds an additional layer of complexity that has potential to confound attempts to interpret interactions between environment, methylome, and plant form. We therefore adopt a positional and longitudinal approach to study progressive changes to barley DNA methylation patterns in response to salt exposure during development under greenhouse conditions. Methylation-sensitive amplified polymorphism (MSAP) and phenotypic analyses of nine diverse barley varieties were grown in a randomized plot design, under two salt treatments (0 and 75 mM NaCl). Combining environmental, phenotypic and epigenetic data analyses, we show that at least part of the epigenetic variability, previously described as stochastic, is linked to environmental micro-variations during plant growth. Additionally, we show that differences in methylation increase with time of exposure to micro-variations in environment. We propose that subsequent epigenetic studies take into account microclimate-induced epigenetic variability.

4.
Proc Biol Sci ; 282(1819)2015 Nov 22.
Article in English | MEDLINE | ID: mdl-26559950

ABSTRACT

Self-fertilization (selfing) favours reproductive success when mate availability is low, but renders populations more vulnerable to environmental change by reducing genetic variability. A mixed-breeding strategy (alternating selfing and outcrossing) may allow species to balance these needs, but requires a system for regulating sexual identity. We explored the role of DNA methylation as a regulatory system for sex-ratio modulation in the mixed-mating fish Kryptolebias marmoratus. We found a significant interaction between sexual identity (male or hermaphrodite), temperature and methylation patterns when two selfing lines were exposed to different temperatures during development. We also identified several genes differentially methylated in males and hermaphrodites that represent candidates for the temperature-mediated sex regulation in K. marmoratus. We conclude that an epigenetic mechanism regulated by temperature modulates sexual identity in this selfing species, providing a potentially widespread mechanism by which environmental change may influence selfing rates. We also suggest that K. marmoratus, with naturally inbred populations, represents a good vertebrate model for epigenetic studies.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Killifishes/physiology , Self-Fertilization , Sex Ratio , Animals , Female , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/physiology , Killifishes/genetics , Male , Sequence Analysis, DNA , Sexual Behavior, Animal , Temperature
5.
BMC Plant Biol ; 12: 193, 2012 Oct 20.
Article in English | MEDLINE | ID: mdl-23082790

ABSTRACT

BACKGROUND: Epigenetic marks superimposed on the DNA sequence of eukaryote chromosomes provide agility and plasticity in terms of modulating gene expression, ontology, and response to the environment. Modulating the methylation status of cytosine can generate epialleles, which have been detected and characterised at specific loci in several plant systems, and have the potential to generate novel and relatively stable phenotypes. There have been no systematic attempts to explore and utilise epiallelic variation, and so extend the range of phenotypes available for selection in crop improvement. We developed an approach for generating novel epialleles by perturbation of the DNA methylation status. 5- Azacytidine (5-AzaC) provides selective targeting of 5 mCG, which in plants is associated with exonic DNA. Targeted chemical intervention using 5-AzaC has advantages over transgenic or mutant modulation of methyltransferases, allowing stochastic generation of epialleles across the genome. RESULTS: We demonstrate the potential of stochastic chemically-induced hypomethylation to generate novel and valuable variation for crop improvement. Systematic analysis of dose-response to 5-AzaC in B. rapa guided generation of a selfed stochastically hypomethylated population, used for forward screening of several agronomic traits. Dose-response was sigmoidal for several traits, similar to that observed for chemical mutagens such as EMS. We demonstrated transgenerational inheritance of some phenotypes. BraRoAZ is a unique hypomethylated population of 1000 E2 sib lines. When compared to untreated controls, 5-Aza C-treated lines exhibited reduced immuno-staining of 5mC on pachytene chromosomes, and Methylation Sensitive Amplified Polymorphism (MSAP) profiles that were both divergent and more variable. There was coincident phenotypic variation among these lines for a range of seed yield and composition traits, including increased seed protein content and decreased oil content, as well as decreased erucic acid and corresponding increases in linoleic and/or palmitic acid. Each 5-AzaC-treated line represents a unique combination of hypomethylated epialleles. CONCLUSIONS: The approach and populations developed are available for forward and reverse screening of epiallelic variation and subsequent functional and inheritance studies. The generation of stochastically hypomethylated populations has utility in epiallele discovery for a wide range of crop plants, and has considerable potential as an intervention strategy for crop improvement.


Subject(s)
Brassica rapa/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Reverse Genetics , Azacitidine/pharmacology , Brassica rapa/anatomy & histology , Brassica rapa/drug effects , Chromosomes, Plant/genetics , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Organ Size/drug effects , Organ Size/genetics , Phenotype , Seedlings/anatomy & histology , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...