Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 29(22): 6336-6349, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37688536

ABSTRACT

Forest decline events have increased worldwide over the last decades being holm oak (Quercus ilex L.) one of the tree species with the most worrying trends across Europe. Since this is one of the tree species with the southernmost distribution within the European continent, its vulnerability to climate change is a phenomenon of enormous ecological importance. Previous research identified drought and soil pathogens as the main causes behind holm oak decline. However, despite tree health loss is a multifactorial phenomenon where abiotic and biotic factors interact in time and space, there are some abiotic factors whose influence has been commonly overlooked. Here, we evaluate how land use (forests versus savannas), topography, and climate extremes jointly determine the spatiotemporal patterns of holm oak defoliation trends over almost three decades (1987-2014) in Spain, where holm oak represents the 25% of the national forested area. We found an increasing defoliation trend in 119 out of the total 134 holm oak plots evaluated, being this defoliation trend significantly higher in forests compared with savannas. Moreover, we have detected that the interaction between topography (which covariates with the land use) and summer precipitation anomalies explains trends of holm oak decline across the Mediterranean region. While a higher occurrence of dry summers increases defoliation trends in steeper terrains where forests dominate, an inverse relationship was found in flatter terrains where savannas are mainly located. These opposite relationships suggest different causal mechanisms behind decline. Whereas hydric stress is likely to occur in steeper terrains where soil water holding capacity is limited, soil waterlogging usually occurs in flatter terrains what increases tree vulnerability to soil pathogens. Our results contribute to the growing evidence of the influence of local topography on forest resilience and could assist in the identification of potential tree decline hotspots and its main causes over the Mediterranean region.

3.
Sci Rep ; 13(1): 5277, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081050

ABSTRACT

Sea level rise has accelerated during recent decades, exceeding rates recorded during the previous two millennia, and as a result many coastal habitats and species around the globe are being impacted. This situation is expected to worsen due to anthropogenically induced climate change. However, the magnitude and relevance of expected increase in sea level rise (SLR) is uncertain for marine and terrestrial species that are reliant on coastal habitat for foraging, resting or breeding. To address this, we showcase the use of a low-cost approach to assess the impacts of SLR on sea turtles under various Intergovernmental Panel on Climate Change (IPCC) SLR scenarios on different sea turtle nesting rookeries worldwide. The study considers seven sea turtle rookeries with five nesting species, categorized from vulnerable to critically endangered including leatherback turtles (Dermochelys coriacea), loggerhead turtles (Caretta caretta), hawksbill turtles (Eretmochelys imbricata), olive ridley turtles (Lepidochelys olivacea) and green turtles (Chelonia mydas). Our approach combines freely available digital elevation models for continental and remote island beaches across different ocean basins with projections of field data and SLR. Our case study focuses on five of the seven living sea turtle species. Under moderate climate change scenarios, by 2050 it is predicted that at some sea turtle nesting habitats 100% will be flooded, and under an extreme scenario many sea turtle rookeries could vanish. Overall, nesting beaches with low slope and those species nesting at open beaches such as leatherback and loggerheads sea turtles might be the most vulnerable by future SLR scenarios.


Subject(s)
Sea Level Rise , Turtles , Animals , Plant Breeding , Climate Change , Ecosystem
4.
New Phytol ; 237(5): 1495-1504, 2023 03.
Article in English | MEDLINE | ID: mdl-36511294

ABSTRACT

Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.


Subject(s)
Bryophyta , Lichens , Ecosystem , Climate Change , Plants , Bryophyta/physiology , Lichens/physiology
5.
Biol Rev Camb Philos Soc ; 97(5): 1768-1785, 2022 10.
Article in English | MEDLINE | ID: mdl-35584903

ABSTRACT

Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global perspectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil communities defined as 'biocrust', it is worth asking whether we all share a clear, universal, and fully articulated definition of what constitutes a biocrust. In this review, we synthesize the literature with the views of new and experienced biocrust researchers, to provide a refined and fully elaborated definition of biocrusts. In doing so, we illustrate the ecological relevance and ecosystem services provided by them. We demonstrate that biocrusts are defined by four distinct elements: physical structure, functional characteristics, habitat, and taxonomic composition. We describe outgroups, which have some, but not all, of the characteristics necessary to be fully consistent with our definition and thus would not be considered biocrusts. We also summarize the wide variety of different types of communities that fall under our definition of biocrusts, in the process of highlighting their global distribution. Finally, we suggest the universal use of the Belnap, Büdel & Lange definition, with minor modifications: Biological soil crusts (biocrusts) result from an intimate association between soil particles and differing proportions of photoautotrophic (e.g. cyanobacteria, algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi, archaea) organisms, which live within, or immediately on top of, the uppermost millimetres of soil. Soil particles are aggregated through the presence and activity of these often extremotolerant biota that desiccate regularly, and the resultant living crust covers the surface of the ground as a coherent layer. With this detailed definition of biocrusts, illustrating their ecological functions and widespread distribution, we hope to stimulate interest in biocrust research and inform various stakeholders (e.g. land managers, land users) on their overall importance to ecosystem and Earth system functioning.


Subject(s)
Bryophyta , Cyanobacteria , Ecosystem , Soil/chemistry , Soil Microbiology
6.
Sci Total Environ ; 792: 148299, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34146814

ABSTRACT

Links between water and carbon (C) cycles in drylands are strongly regulated by biocrusts. These widespread communities in the intershrub spaces of drylands are able to use non-rainfall water inputs (NRWI) (fog, dewfall and water vapour) to become active and fix carbon dioxide (CO2), converting biocrusts into the main soil C contributors during periods in which vegetation remains inactive. In this study, we first evaluated the influence of biocrust type on NRWI uptake using automated microlysimeters, and second, we performed an outdoor experiment to examine how NRWI affected C exchange (photosynthesis and respiration) in biocrusts. NRWI uptake increased from incipient cyanobacteria to well-developed cyanobacteria and lichen biocrusts. NRWI triggered biocrust activity but with contrasting effects on CO2 fluxes depending on the main NRWI source. Fog mainly stimulated respiration of biocrust-covered soils, reaching net CO2 emissions of 0.68 µmol m-2 s-1, while dew had a greater effect stimulating biocrust photosynthesis and resulted in net CO2 uptake of 0.66 µmol m-2 s-1. These findings demonstrate the key role that NRWI play in biocrust activity and the soil C balance in drylands.


Subject(s)
Bryophyta , Carbon Cycle , Ecosystem , Soil , Water
7.
Sensors (Basel) ; 21(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466513

ABSTRACT

Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.


Subject(s)
Deep Learning , Ecosystem , Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods
8.
Glob Chang Biol ; 26(10): 6003-6014, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32729653

ABSTRACT

The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (-40%) and commence runoff (-33%), and reduced infiltration (-34%) and sediment production (-68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (-56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.


Subject(s)
Bryophyta , Water , Climate Change , Ecosystem , Soil , Soil Microbiology
9.
Sci Rep ; 9(1): 6468, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015576

ABSTRACT

Biological soil crusts (biocrusts) occur within drylands throughout the world, covering ~12% of the global terrestrial soil surface. Their occurrence in the deserts of the Arabian Peninsula has rarely been reported and their spatial distribution, diversity, and microbial composition remained largely unexplored. We investigated biocrusts at six different locations in the coastal and central deserts of Oman. The biocrust types were characterized, and the bacterial and fungal community compositions of biocrusts and uncrusted soils were analysed by amplicon sequencing. The results were interpreted based on the environmental parameters of the different sites. Whereas at lowland sites, mainly cyanobacteria-dominated biocrusts were observed, both cyanobacteria- and lichen-dominated biocrusts occurred at mountain sites. The majority of bacterial sequences (32-83% of total sequences) belonged to Actinobacteria, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes, whereas fungal sequences belonged to Ascomycota, Basidiomycota, and Chytridiomycota (>95%). With biocrust development, a notable increase in cyanobacterial and decrease in actinobacterial proportions was observed for cyanobacteria-dominated crusts. In coastal areas, where salinity is high, biocrusts were replaced by a unique marine mat-like microbial community, dominated by halotolerant taxa. Redundancy analysis revealed a significant contribution of soil texture, cover type, carbon content, and elevation to the variations in bacterial and fungal communities. Multivariate analysis placed microbial communities in significantly separated clusters based on their carbon content, elevation and electrical conductivity. We conclude that Oman hosts a variety of cyanobacteria- and lichen-dominated crusts with their bacterial and fungal communities being largely dictated by soil properties and environmental parameters.


Subject(s)
Bacteria , Biodiversity , Desert Climate , Fungi , Mycobiome , Soil Microbiology , Soil , Animals , Bacteria/classification , Bacteria/genetics , Fungi/classification , Fungi/genetics , Oman
10.
Environ Microbiol Rep ; 10(3): 264-271, 2018 06.
Article in English | MEDLINE | ID: mdl-29488349

ABSTRACT

Desert varnishes are dark rock coatings observed in arid environments and might resemble Mn-rich coatings found on Martian rocks. Their formation mechanism is not fully understood and the possible microbial involvement is under debate. In this study, we applied DNA metagenomic Shotgun sequencing of varnish and surrounding soil to evaluate the composition of the microbial community and its potential metabolic function. We found that the α diversity was lower in varnish compared to soil samples (p value < 0.05), suggesting distinct populations with significantly higher abundance of Actinobacteria, Proteobacteria and Cyanobacteria within the varnish. Additionally, we observed increased levels of transition metal metabolic processes in varnish compared to soil samples. Nevertheless, potentially relevant enzymes for varnish formation were detected at low to insignificant levels in both niches, indicating no current direct microbial involvement in Mn oxidation. This finding is supported by quantitative genomic analysis, elemental analysis, fluorescence imaging and scanning transmission X-ray microscopy. We thus conclude that the distinct microbial communities detected in desert varnish originate from settled Aeolian microbes, which colonized this nutrient-enriched niche, and discuss possible indirect contributions of microorganisms to the formation of desert varnish.


Subject(s)
Actinobacteria/classification , Clay/microbiology , Cyanobacteria/classification , Ferric Compounds/metabolism , Manganese Compounds/metabolism , Oxides/metabolism , Proteobacteria/classification , Soil Microbiology , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Metagenomics/methods , Microbiota/genetics , Proteobacteria/genetics , Proteobacteria/isolation & purification , Proteobacteria/metabolism , Sequence Analysis, DNA/methods
11.
Sci Total Environ ; 586: 1287-1297, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28236481

ABSTRACT

Dryland vegetation developed morphological and physiological strategies to cope with drought. However, as aridity increases, vascular plant coverage gets sparse and microbially-dominated surface communities (MSC), comprising cyanobacteria, algae, lichens and bryophytes together with heterotropic bacteria, archaea and fungi, gain relevance. Nevertheless, the relevance of MSC net primary productivity has only rarely been considered in ecosystem scale studies, and detailed information on their contribution to the total photosynthetic biomass reservoir is largely missing. In this study, we mapped the spatial distribution of two different MSC (biological soil crusts and quartz fields hosting hypolithic crusts) at two different sites within the South African Succulent Karoo (Soebatsfontein and Knersvlakte). Then we characterized both types of MSC in terms of chlorophyll content, and combining these data with the biocrust and quartz field maps, we estimated total biomass values of MSCs and their spatial patterns within the two different ecosystems. Our results revealed that MSC are important vegetation components of the South African Karoo biome, revealing clear differences between the two sites. At Soebatsfontein, MSC occurred as biological soil crusts (biocrusts), which covered about one third of the landscape reaching an overall biomass value of ~480gha-1 of chlorophyll a+b at the landscape scale. In the Knersvlakte, which is characterized by harsher environmental conditions (i.e. higher solar radiation and potential evapotranspiration), MSC occurred as biocrusts, but also formed hypolithic crusts growing on the lower soil-immersed parts of translucent quartz pebbles. Whereas chlorophyll concentrations of biocrusts and hypolithic crusts where insignificantly lower in the Knersvlakte, the overall MSC biomass reservoir was by far larger with ~780gha-1 of chlorophyll a+b. Thus, the complementary microbially-dominated surface communities promoted biomass formation within the environmentally harsh Knersvlakte ecosystem.


Subject(s)
Biomass , Remote Sensing Technology , Soil Microbiology , Chlorophyll , Chlorophyll A , Ecosystem , Soil , South Africa
12.
Proc Natl Acad Sci U S A ; 112(50): 15384-9, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26621714

ABSTRACT

Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.


Subject(s)
Ecosystem , Nitric Oxide/analysis , Nitrogen Cycle , Nitrous Acid/analysis , Soil Pollutants/analysis , Soil/chemistry , Cyanobacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...