Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Dev Biol ; 11(4)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37873747

ABSTRACT

Today, agriculture around the world is challenged by parasitic nematode infections. Plant-parasitic nematodes (PPNs) can cause significant damage and crop loss and are a threat to food security. For a long time, the management of PPN infection has relied on nematicides that impact not only parasitic nematodes but also other organisms. More recently, new nematicides have been developed that appear to specifically target PPN. Cyclobutrifluram belongs to this new category of nematicides. Using the nematode Caenorhabditis elegans as a model organism, we show here that cyclobutrifluram strongly impacts the survival and fertility rates of the worm by decreasing the number of germ cells. Furthermore, using a genetic approach, we demonstrate that cyclobutrifluram functions by inhibiting the mitochondrial succinate dehydrogenase (SDH) complex. Transcriptomic analysis revealed a strong response to cyclobutrifluram exposure. Among the deregulated genes, we found genes coding for detoxifying proteins, such as cytochrome P450s and UDP-glucuronosyl transferases (UGTs). Overall, our study contributes to the understanding of the molecular mode of action of cyclobutrifluram, to the finding of new approaches against nematicide resistance, and to the discovery of novel nematicides. Furthermore, this study confirms that C. elegans is a suitable model organism to study the mode of action of nematicides.

2.
Hum Cell ; 35(4): 1005-1015, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35511404

ABSTRACT

Mesenchymal stromal cells (MSC) stop or slow retinal pigment epithelium (RPE) and neuroretina (NR) degeneration by paracrine activity in oxidative stress-induced retinal degenerative diseases. However, it is mandatory to develop adequate in vitro models that allow testing new treatment strategies against oxidative stress before performing in vivo studies. The viable double- and triple-layered setups are composed of separate layers of NR, MSC, and RPE (NR-MSC-RPE, NR-RPE, MSC-RPE) partially mimic in vivo retinal conditions. In this study, the paracrine neuroprotective effect of each setup's microenvironment on hydrogen peroxide (H2O2)-stressed was compared with unstressed RPE cells. RPE cell proliferation viability was assessed on day 1, 3, and 6 using Alamar Blue® (10%), MTT (10%) and a cell viability/cytotoxicity assay kit followed by data analysis. The results showed that RPE cells, highly viable (> 90%) in mixed medium of DMEM and neurobasal A (1:1), lost 50% viability on exposure to 400 µM of H2O2 (P < 0.05). The unexposed groups differed significantly from exposed groups for RPE cell growth (RPE and [Formula: see text]RPE (P < 0.0001), NR-MSC-RPE, and NR-MSC-[Formula: see text]RPE (P < 0.05), NR-RPE and NR-[Formula: see text]RPE (P < 0.01), and MSC-RPE and MSC-[Formula: see text]RPE (P < 0.01). NR-[Formula: see text]RPE and NR-RPE supported RPE cell proliferation viability better than other setups (P < 0.01) and RPE cells proliferated 0.49-fold more in NR-MSC-[Formula: see text]RPE than NR-MSC-RPE. Thus, NR and MSC presence improved significantly each setup's microenvironment for cell rescue, nevertheless, each setup also showed limitations for its use as an in vitro study tool. Health of microenvironment of such setups depends on many factors including cell-secreted trophic factors.


Subject(s)
Hydrogen Peroxide , Mesenchymal Stem Cells , Epithelial Cells , Hydrogen Peroxide/pharmacology , Oxidative Stress , Retinal Pigment Epithelium , Retinal Pigments/pharmacology
3.
Genetics ; 221(1)2022 05 05.
Article in English | MEDLINE | ID: mdl-35262739

ABSTRACT

Specific gene transcriptional programs are required to ensure the proper proliferation and differentiation processes underlying the production of specialized cells during development. Gene activity is mainly regulated by the concerted action of transcription factors and chromatin proteins. In the nematode Caenorhabditis elegans, mechanisms that silence improper transcriptional programs in germline and somatic cells have been well studied, however, how are tissue-specific sets of genes turned on is less known. LSL-1 is herein defined as a novel crucial transcriptional regulator of germline genes in C. elegans. LSL-1 is first detected in the P4 blastomere and remains present at all stages of germline development, from primordial germ cell proliferation to the end of meiotic prophase. lsl-1 loss-of-function mutants exhibit many defects including meiotic prophase progression delay, a high level of germline apoptosis, and production of almost no functional gametes. Transcriptomic analysis and ChIP-seq data show that LSL-1 binds to promoters and acts as a transcriptional activator of germline genes involved in various processes, including homologous chromosome pairing, recombination, and genome stability. Furthermore, we show that LSL-1 functions by antagonizing the action of the heterochromatin proteins HPL-2/HP1 and LET-418/Mi2 known to be involved in the repression of germline genes in somatic cells. Based on our results, we propose LSL-1 to be a major regulator of the germline transcriptional program during development.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Germ Cells/metabolism , Meiosis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc
4.
Biol Open ; 6(2): 296-304, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28011628

ABSTRACT

Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response.

5.
Mol Vis ; 22: 243-53, 2016.
Article in English | MEDLINE | ID: mdl-27081295

ABSTRACT

PURPOSE: To develop and standardize a novel organ culture model using porcine central neuroretina explants and RPE cells separated by a cell culture membrane. METHODS: RPE cells were isolated from porcine eyes, expanded, and seeded on the bottom of cell culture inserts. Neuroretina explants were obtained from the area centralis and cultured alone (controls) on cell culture membranes or supplemented with RPE cells in the same wells but physically separated by the culture membrane. Finally, cellular and tissue specimens were processed for phase contrast, cyto-/histological, and immunochemical evaluation. Neuroretina thickness was also determined. RESULTS: Compared to the neuroretinas cultured alone, the neuroretinas cocultured with RPE cells maintained better tissue structure and cellular organization, displayed better preservation of photoreceptors containing rhodopsin, lower levels of glial fibrillary acidic protein immunoexpression, and preservation of cellular retinaldehyde binding protein both markers of reactive gliosis. Neuroretina thickness was significantly greater in the cocultures. CONCLUSIONS: A coculture model of central porcine neuroretina and RPE cells was successfully developed and standardized. This model mimics a subretinal space and will be useful in studying interactions between the RPE and the neuroretina and to preclinically test potential therapies.


Subject(s)
Retina/cytology , Retinal Pigment Epithelium/cytology , Animals , Biomarkers/metabolism , Coculture Techniques , Immunohistochemistry , Models, Biological , Organ Culture Techniques , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Swine
6.
Cell Rep ; 14(5): 1100-1113, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26804909

ABSTRACT

Centrosome asymmetry has been implicated in stem cell fate maintenance in both flies and vertebrates, but the underlying molecular mechanisms are incompletely understood. Here, we report that loss of CG7337, the fly ortholog of WDR62, compromises interphase centrosome asymmetry in fly neural stem cells (neuroblasts). Wdr62 maintains an active interphase microtubule-organizing center (MTOC) by stabilizing microtubules (MTs), which are necessary for sustained recruitment of Polo/Plk1 to the pericentriolar matrix (PCM) and downregulation of Pericentrin-like protein (Plp). The loss of an active MTOC in wdr62 mutants compromises centrosome positioning, spindle orientation, and biased centrosome segregation. wdr62 mutant flies also have an ∼40% reduction in brain size as a result of cell-cycle delays. We propose that CG7337/Wdr62, a microtubule-associated protein, is required for the maintenance of interphase microtubules, thereby regulating centrosomal Polo and Plp levels. Independent of this function, Wdr62 is also required for the timely mitotic entry of neural stem cells.


Subject(s)
Centrosome/metabolism , Drosophila melanogaster/metabolism , Microcephaly/metabolism , Neurons/cytology , Neurons/metabolism , Animals , Cell Cycle Proteins/metabolism , Centrioles/metabolism , Drosophila Proteins/metabolism , Humans , Interphase , Microtubule-Organizing Center/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Sequence Homology, Amino Acid , Spindle Apparatus/metabolism , Polo-Like Kinase 1
7.
Cell Tissue Res ; 358(3): 705-16, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25213807

ABSTRACT

Mesenchymal stem cell (MSC) therapy is promising for neuroprotection but there is no report of an appropriate in vitro model mimicking the situation of the in vivo retina that is able to test the effect of MSCs in suspension or encapsulated with/without a drug combination. This study aims to establish a viable mixed co-culture model having three layers: neuroretina explants (NRs), retinal pigment epithelium (RPE) cells and adipose tissue-derived MSCs (AT-MSCs) for evaluating adipose-MSC effects. AT-MSCs were grown on the lower surface of a transwell membrane and RPE cells were grown on the bottom of a culture plate as monocultures. A transwell membrane was inserted into a culture plate well. NR was placed as an organotypic culture on the upper surface of the transwell membrane. Thus, a triple-layered co-culture setup was constructed. In double-layered setups, NR were co-cultured with AT-MSCs or RPE cells. Optimum medium, experiment execution period and transwell membrane permeability (TMP) were determined. MSC effects on RPE cell proliferation and NR reactive gliosis were evaluated. Limitations were discussed. Our study shows that neurobasal A with DMEM (1:1) mixed medium was suitable for viability of all three layers. AT-MSC growth decreased TMP significantly, 30-60 % in 3- to 6-day periods. Spontaneous NR reactive gliosis limits the experiment execution period to 6 days. AT-MSCs maintained their undifferentiated nature and showed no or limited neuroprotective effects. In this study, we successfully assembled viable double- and triple-layered co-culture setups for AT-MSCs, RPE and NR, optimised conditions for their survival and explored setup Limitations.


Subject(s)
Adipose Tissue/cytology , Coculture Techniques/methods , Mesenchymal Stem Cells/cytology , Models, Biological , Neuroprotective Agents/metabolism , Retinal Pigment Epithelium/cytology , Animals , Carrier Proteins/metabolism , Cell Proliferation , Fluorescent Antibody Technique , Glial Fibrillary Acidic Protein/metabolism , Humans , Phenotype , Sus scrofa
8.
Biomed Res Int ; 2014: 287896, 2014.
Article in English | MEDLINE | ID: mdl-24719852

ABSTRACT

Retinal stem cells (RSCs) are promising in cell replacement strategies for retinal diseases. RSCs can migrate, differentiate, and integrate into retina. However, RSCs transplantation needs an adequate support; chitosan membrane (ChM) could be one, which can carry RSCs with high feasibility to support their integration into retina. RSCs were isolated, evaluated for phenotype, and subsequently grown on sterilized ChM and polystyrene surface for 8 hours, 1, 4, and 11 days for analysing cell adhesion, proliferation, viability, and phenotype. Isolated RSCs expressed GFAP, PKC, isolectin, recoverin, RPE65, PAX-6, cytokeratin 8/18, and nestin proteins. They adhered (28 ± 16%, 8 hours) and proliferated (40 ± 20 cells/field, day 1 and 244 ± 100 cells/field, day 4) significantly low (P < 0.05) on ChM. However, they maintained similar viability (>95%) and phenotype (cytokeratin 8/18, PAX6, and nestin proteins expression, day 11) on both surfaces (ChM and polystyrene). RSCs did not express alpha-SMA protein on both surfaces. RSCs express proteins belonging to epithelial, glial, and neural cells, confirming that they need further stimulus to reach a final destination of differentiation that could be provided in in vivo condition. ChM does not alternate RSCs behaviour and therefore can be used as a cell carrier so that slow proliferating RSCs can migrate and integrate into retina.


Subject(s)
Cell Proliferation/drug effects , Chitosan/chemistry , Retina/transplantation , Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Chitosan/pharmacology , Membranes/chemistry , Neuroglia/cytology , Neuroglia/drug effects , Neurons/cytology , Neurons/drug effects , Phenotype , Retina/cytology , Retina/growth & development , Stem Cell Transplantation , Stem Cells/cytology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...