Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36917386

ABSTRACT

The continuous endemic of the new SARS-CoV-2 virus brought a halt to the world's activities from February 2020. Our study intends to gauge public perceptions on the consequences of post-pandemic changes on the marine environment, particularly as they are related to tourist beach amenities. Totally, 16 nations' knowledge and views on various environmental viewpoints over the effects of epidemic were gathered through public polls live on social media during social confinement in 2020. The results indicate that around 85% of respondents were most concerned about the alarming sights of widespread plastic trash and the increase of dangerous biomedical wastes through wastewater in the marine ecosystem. The outcomes of this study will undoubtedly aid in the establishment of a management strategy and for future studies on the consequences of any epidemic on the beaches.

2.
Environ Sci Pollut Res Int ; 29(41): 61698-61710, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35347601

ABSTRACT

The vertical distribution pattern and concentrations of elements (Fe, Al, Ca, Mg, Mn, Cr, Cu, Ni, Co, Pb, Zn, and As) in the estuarine and lagoon region of Marquelia coast, Guerrero, Mexico, were studied to comprehend the origin and pollutant phases of geochemical elements. Henceforth, two sediment core samples [C1 (127 cm) and C2 (110 cm)] were collected to assess the pollution status using geochemical indices, namely anthropogenic factor (AF), enrichment factor (EF), and geoaccumulation index (Igeo). Additionally, the elemental concentrations were compared with the sediment quality guidelines (SQGs) to examine the potential risks to biota. Among the two depositional environments, the sediments of lagoon Apozahualco exhibited higher concentrations of elements. The granulometry characteristics of sediment grains also attested that the concentration and mobilization of metals are largely governed by the fine-grained fractions. Major elemental concentration and grain size changes were identified at several depths (30-40, 60-70, and 90-100 cm) revealing the internal hydrodynamic condition. The overall assessment of geochemical indices revealed that the sediments were unpolluted to moderately polluted. The anthropogenic factor indicated that the upper portion of the sediments were affected by anthropogenic influences. The comparison of trace element concentration with SQGs denoted that Cr, Ni, and As could pose potential adverse effect to the organisms that live in and near the sedimentary environment. Factor analysis revealed the origin and behaviour of the studied elements during transportation and deposition processes in both the ecosystems (i.e. estuary and lagoon). The results of this study provided an in-depth understanding of variations in elemental concentration and pollution status of sediment profile in coastal transitional environments that would aid in sustainable management.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Mexico , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...