Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Surf Sci ; 530: 147294, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32834267

ABSTRACT

InP-In2O3 colloidal quantum dots (QDs) synthesized by a single-step chemical method without injection of hot precursors (one-pot) were investigated. Specifically, the effect of the tris(trimethylsilyl)phosphine, P(TMS)3, precursor concentration on the QDs properties was studied to effectively control the size and shape of the samples with a minimum size dispersion. The effect of the P(TMS)3 precursor concentration on the optical, structural, chemical surface, and electronic properties of InP-In2O3 QDs is discussed. The absorption spectra of InP-In2O3 colloids, obtained by both UV-Vis spectrophotometry and photoacoustic spectroscopy, showed a red-shift in the high-energy regime as the concentration of the P(TMS)3 increased. In addition, these results were used to determine the band-gap energy of the InP-In2O3 nanoparticles, which changed between 2.0 and 2.9 eV. This was confirmed by Photoluminescence spectroscopy, where a broad-band emission displayed from 2.0 to 2.9 eV is associated with the excitonic transition of the InP and In2O3 QDs. In2O3 and InP QDs with diameters ranging approximately from 8 to 10 nm and 6 to 9 nm were respectively found by HR-TEM. The formation of the InP and In2O3 phases was confirmed by X-ray Photoelectron Spectroscopy.

2.
Luminescence ; 35(5): 781-787, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32030872

ABSTRACT

This study reports the structural and optical properties of CdS/ZnTiO3 nanocomposites prepared using a chemical bath and different titanate concentrations. Commercial ZnTiO3 nanoparticles were introduced into a chemical bath that had been used to produce CdS semiconductor nanoparticles (NPs). Here, the growing CdS crystallites precipitated onto the suspended zinc titanate NPs. X-ray diffraction patterns revealed that samples of CdS/ZnTiO3 nanopowders were made of cubic ZnTiO3 and hexagonal CdS wurtzite. The morphology of the particles was studied using transmission electron microscopy and scanning electron microscopy images. These images demonstrated the different characteristics of the CdS/ZnTiO3 nanocomposites and their dependence on titanate concentration when placed into the CdS-growing solution. Photoluminescence spectra showed three main emission bands for the electron transitions in the CdS/ZnTiO3 composite. This composite produced three photoluminescence bands, the intensities of which depended on composite shape, which in turn depended on the relative concentrations of CdS and ZnTiO3 .


Subject(s)
Cadmium Compounds/chemistry , Luminescent Measurements , Nanostructures/chemistry , Oxides/chemistry , Sulfides/chemistry , Titanium/chemistry , Zinc/chemistry , Particle Size , Photochemical Processes , Porosity , Semiconductors , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...