Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 916, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123598

ABSTRACT

Type 1 diabetes mellitus (T1D) patients face daily difficulties in keeping their blood glucose levels within appropriate ranges. Several techniques and devices, such as flash glucose meters, have been developed to help T1D patients improve their quality of life. Most recently, the data collected via these devices is being used to train advanced artificial intelligence models to characterize the evolution of the disease and support its management. Data scarcity is the main challenge for generating these models, as most works use private or artificially generated datasets. For this reason, this work presents T1DiabetesGranada, an open under specific permission longitudinal dataset that not only provides continuous glucose levels, but also patient demographic and clinical information. The dataset includes 257 780 days of measurements spanning four years from 736 T1D patients from the province of Granada, Spain. This dataset advances beyond the state of the art as one the longest and largest open datasets of continuous glucose measurements, thus boosting the development of new artificial intelligence models for glucose level characterization and prediction.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Artificial Intelligence , Blood Glucose , Blood Glucose Self-Monitoring/methods , Glucose , Quality of Life
2.
JMIR Mhealth Uhealth ; 9(6): e25138, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34081010

ABSTRACT

BACKGROUND: Diabetes mellitus is a metabolic disorder that affects hundreds of millions of people worldwide and causes several million deaths every year. Such a dramatic scenario puts some pressure on administrations, care services, and the scientific community to seek novel solutions that may help control and deal effectively with this condition and its consequences. OBJECTIVE: This study aims to review the literature on the use of modern mobile and wearable technology for monitoring parameters that condition the development or evolution of diabetes mellitus. METHODS: A systematic review of articles published between January 2010 and July 2020 was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Manuscripts were identified through searching the databases Web of Science, Scopus, and PubMed as well as through hand searching. Manuscripts were included if they involved the measurement of diabetes-related parameters such as blood glucose level, performed physical activity, or feet condition via wearable or mobile devices. The quality of the included studies was assessed using the Newcastle-Ottawa Scale. RESULTS: The search yielded 1981 articles. A total of 26 publications met the eligibility criteria and were included in the review. Studies predominantly used wearable devices to monitor diabetes-related parameters. The accelerometer was by far the most used sensor, followed by the glucose monitor and heart rate monitor. Most studies applied some type of processing to the collected data, mainly consisting of statistical analysis or machine learning for activity recognition, finding associations among health outcomes, and diagnosing conditions related to diabetes. Few studies have focused on type 2 diabetes, even when this is the most prevalent type and the only preventable one. None of the studies focused on common diabetes complications. Clinical trials were fairly limited or nonexistent in most of the studies, with a common lack of detail about cohorts and case selection, comparability, and outcomes. Explicit endorsement by ethics committees or review boards was missing in most studies. Privacy or security issues were seldom addressed, and even if they were addressed, they were addressed at a rather insufficient level. CONCLUSIONS: The use of mobile and wearable devices for the monitoring of diabetes-related parameters shows early promise. Its development can benefit patients with diabetes, health care professionals, and researchers. However, this field is still in its early stages. Future work must pay special attention to privacy and security issues, the use of new emerging sensor technologies, the combination of mobile and clinical data, and the development of validated clinical trials.


Subject(s)
Diabetes Mellitus, Type 2 , Wearable Electronic Devices , Blood Glucose , Exercise , Humans , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...