Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomed Opt Express ; 14(7): 3671-3688, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37497489

ABSTRACT

Tunable lenses, optical elements able to change their optical power within milliseconds, constitute an emerging technology increasingly used in ophthalmic applications. In this study, 25 subjects looked through tunable lenses at a chromatic stimulus to evaluate the perceptual response of the human visual system to periodic changes in defocus of 0.25D of amplitude and 15 Hz of temporal frequency. These defocus changes produce flicker and chromatic distortions that change with the overall level of defocus. The task in this study was to minimize the flicker by varying the average optical power, and it was performed for different myopic and hyperopic starting points. Subjects also performed a blur-minimization task in a black-and-white stimulus of the same geometry. The flicker-minimization task is more repeatable than the blur-minimization task (standard deviations ±0.17D and ±0.49D). The time per repetition of the flicker-minimization task is only 38s. Cycloplegia severely affects the blur-minimization, but not the flicker-minimization task, confirming that defocus flicker deactivates the accommodative system. This discovery can be used to develop new methods for measuring the refractive error of the eye that does not require supervision and can potentially improve existing subjective methods in terms of accuracy, precision, and measurement time.

2.
Biomed Opt Express ; 14(7): 3654-3670, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37497500

ABSTRACT

Tunable lenses make it possible to measure visual sensitivity to rapid changes in optical power, surpassing the limits imposed by mechanical elements. Using a tunable lens system, we measured, for the first time, the spatiotemporal defocus sensitivity function (STDSF), and the limits of human defocus perception. Specifically, we measured defocus sensitivity using a QUEST adaptive psychophysical procedure for different stimuli (Gabor patches of different spatial frequencies, natural images, and edges) and we developed descriptive models of defocus perception. For Gabor patches, we found on average (across seven subjects) that the maximum sensitivity to defocus is 0.22 D at 14 cpd and 10 Hz, and that the upper limits of sensitivity are 40 cpd and 40 Hz. Our results suggest that accommodation remains fixed while performing the defocus flicker-detection task. These results have implications for new technologies whose working principles make use of fast changes to defocus.

3.
BMC Ophthalmol ; 23(1): 289, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353733

ABSTRACT

BACKGROUND: Cataracts affect the optics of the eye in terms of absorption, blur, and scattering. When cataracts are unilateral, they cause differences between the eyes that can produce visual discomfort and harm binocular vision. These interocular differences can also induce differences in the processing speed of the eyes that may cause a spontaneous Pulfrich effect, a visual illusion provoking important depth misperceptions. Interocular differences in light level, like those present in unilateral cataracts, can cause the Classic Pulfrich effect, and interocular differences in blur, like those present in monovision, a common correction for presbyopia, can cause the Reverse Pulfrich effect. The visual system may be able to adapt, or not, to the new optical condition, depending on the degree of the cataract and the magnitude of the monovision correction. CASE PRESENTATION: Here, we report a unique case of a 45-year-old patient that underwent unilateral cataract surgery resulting in a monovision correction of 2.5 diopters (D): left eye emmetropic after the surgery compensated with a monofocal intraocular lens and right eye myopic with a spherical equivalent of -2.50 D. This patient suffered severe symptoms in binocular vision, which can be explained by a spontaneous Pulfrich effect (a delay measured of 4.82 ms, that could be eliminated with a 0.19 optical density filter). After removing the monovision with clear lens extraction in the second eye, symptoms disappeared. We demonstrate that, at least in this patient, both Classic and Reverse Pulfrich effects coexist after unilateral cataract surgery and that can be readapted by reverting the interocular differences. Besides, we report that the adaptation/readaptation process to the Reverse Pulfrich effect happens in a timeframe of weeks, as opposed to the Classic Pulfrich effect, known to have timeframes of days. Additionally, we used the illusion measured in the laboratory to quantify the relevance of the spontaneous Pulfrich effect in different visual scenarios and tasks, using geometrical models and optic flow algorithms. CONCLUSIONS: Measuring the different versions of the Pulfrich effect might help to understand the visual discomfort reported by many patients after cataract surgery or with monovision and could guide compensation or intervention strategies.


Subject(s)
Cataract Extraction , Cataract , Lenses, Intraocular , Presbyopia , Humans , Middle Aged , Vision, Monocular , Lens Implantation, Intraocular , Cataract/etiology
4.
Transl Vis Sci Technol ; 12(3): 18, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36939712

ABSTRACT

Purpose: To propose new methods for eye selection in presbyopic monovision corrections. Methods: Twenty subjects with presbyopia performed two standard methods of binary eye dominance identification (sensory with +1.50 diopters [D ]and +0.50 D and sighting with "hole-in-the-card") and two psychophysical methods of perceived visual quality: (1) the Preferential test, 26 natural images were judged with the near addition in one eye or in the other in a 2-interval forced-choice task, and the Eye Dominance Strength (EDS) defined as the proportion of trials where one monovision is preferred over the other; (2) the Multifocal Acceptance Score (MAS-2EV) test, the perceived quality of a natural images set (for 2 luminance levels and distances) was scored and EDS defined as the score difference between monovision in one eye or the other. Left-eye and right-eye dominance are indicated with negative and positive values, respectively. Tests were performed using a Simultaneous Vision Simulator, which allows rapid changes between corrections. Results: Standard sensory and sighting dominances matched in only 55% of subjects. The Preferential EDS (ranging from -0.7 to +0.9) and MAS-2EV EDS (ranging from -0.6 to +0.4) were highly correlated. Selecting the eye for far in monovision with the MAS-2EV, sensory, or sighting tests would have resulted in 79%, 64%, and 43% success considering the Preferential test as the gold standard. Conclusions: Tests based on perceptual preference allow selection of the preferred monovision correction and measurement of dominance strength. Translational Relevance: The binocular visual simulator allows efficient implementation of eye preference tests for monovision in clinical use.


Subject(s)
Dominance, Ocular , Vision, Monocular , Humans , Visual Acuity , Vision, Ocular , Vision Tests
5.
Appl Opt ; 61(27): 8091-8099, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36255931

ABSTRACT

Tunable lenses (TLs) are optical devices that can change their optical power in response to an electrical signal. In many applications, they are often pushed to or beyond their temporal limits. Fast periodic and/or abrupt variations of the optical power induce undesired distortions in their transient response and produce a decrease in their performance. A low-cost focimetry system, along with a custom closed-loop iterative optimization algorithm, was developed to (1) characterize a TL's response at high speed and (2) optimize their performance in realistic TL working conditions. A significant lens performance improvement was found in about 23 iterations with a decrease in the area under the error curve and an improved effective time. Applying the closed-loop optimization algorithm in a depth scanning experiment enhanced the image quality. Quantitatively, the image quality was evaluated using the structural similarity index metric that improves in individual frames, on average, from 0.345 to 0.895.

6.
Curr Opin Ophthalmol ; 33(3): 228-234, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35102097

ABSTRACT

PURPOSE OF REVIEW: The evaluation of refractive error is probably the most important and common procedure in eye care. The gold standard method for evaluating refractive error is subjective refraction, a process that has not significantly changed in 200years. This article aims to review recent technologies and novel approaches attempting to improve this traditional procedure. RECENT FINDINGS: From laboratory prototypes to commercial instruments, the proposed methods aim to perform reliable and fast subjective refractions, following different approaches: using motorized phoropters in combination with automatic algorithms or even self-refraction, hybridizing objective and subjective measurements within the same instruments, or using new visual tasks beyond letter identification of blur estimation to obtain the refractive error subjectively. SUMMARY: The current trend in subjective refraction is to overcome the traditional manual blur reduction method, using automatic and self-refraction instruments, which can provide faster measurements with lower variability. Many of the technologies reported here are already in the market, and some have the potential of becoming the new standard in subjective refraction.


Subject(s)
Refractive Errors , Vision Tests , Algorithms , Humans , Refraction, Ocular , Refractive Errors/diagnosis , Vision Tests/methods
7.
Sci Rep ; 10(1): 16086, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32999323

ABSTRACT

Interocular differences in image blur can cause processing speed differences that lead to dramatic misperceptions of the distance and three-dimensional direction of moving objects. This recently discovered illusion-the reverse Pulfrich effect-is caused by optical conditions induced by monovision, a common correction for presbyopia. Fortunately, anti-Pulfrich monovision corrections, which darken the blurring lens, can eliminate the illusion for many viewing conditions. However, the reverse Pulfrich effect and the efficacy of anti-Pulfrich corrections have been demonstrated only with trial lenses. This situation should be addressed, for clinical and scientific reasons. First, it is important to replicate these effects with contact lenses, the most common method for delivering monovision. Second, trial lenses of different powers, unlike contacts, can cause large magnification differences between the eyes. To confidently attribute the reverse Pulfrich effect to interocular optical blur differences, and to ensure that previously reported effect sizes are reliable, one must control for magnification. Here, in a within-observer study with five separate experiments, we demonstrate that (1) contact lenses and trial lenses induce indistinguishable reverse Pulfrich effects, (2) anti-Pulfrich corrections are equally effective when induced by contact and trial lenses, and (3) magnification differences do not cause or impact the Pulfrich effect.

8.
Curr Biol ; 29(15): 2586-2592.e4, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31353183

ABSTRACT

Monovision is a common prescription lens correction for presbyopia [1]. Each eye is corrected for a different distance, causing one image to be blurrier than the other. Millions of people have monovision corrections, but little is known about how interocular blur differences affect motion perception. Here, we report that blur differences cause a previously unknown motion illusion that makes people dramatically misperceive the distance and three-dimensional direction of moving objects. The effect occurs because the blurry and sharp images are processed at different speeds. For moving objects, the mismatch in processing speed causes a neural disparity, which results in the misperceptions. A variant of a 100-year-old stereo-motion phenomenon called the Pulfrich effect [2], the illusion poses an apparent paradox: blur reduces contrast, and contrast reductions are known to cause neural processing delays [3-6], but our results indicate that blurry images are processed milliseconds more quickly. We resolve the paradox with known properties of the early visual system, show that the misperceptions can be severe enough to impact public safety, and demonstrate that the misperceptions can be eliminated with novel combinations of non-invasive ophthalmic interventions. The fact that substantial perceptual errors are caused by millisecond differences in processing speed highlights the exquisite temporal calibration required for accurate perceptual estimation. The motion illusion-the reverse Pulfrich effect-and the paradigm we use to measure it should help reveal how optical and image properties impact temporal processing, an important but understudied issue in vision and visual neuroscience.


Subject(s)
Depth Perception , Illusions , Motion Perception , Presbyopia/therapy , Vision, Monocular/physiology , Adult , Female , Humans , Male , Motion , Young Adult
9.
Opt Express ; 27(3): 2085-2100, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732252

ABSTRACT

Tunable lenses are becoming ubiquitous, in applications including microscopy, optical coherence tomography, computer vision, quality control, and presbyopic corrections. Many applications require an accurate control of the optical power of the lens in response to a time-dependent input waveform. We present a fast focimeter (3.8 KHz) to characterize the dynamic response of tunable lenses, which was demonstrated on different lens models. We found that the temporal response is repetitive and linear, which allowed the development of a robust compensation strategy based on the optimization of the input wave, using a linear time-invariant model. To our knowledge, this work presents the first procedure for a direct characterization of the transient response of tunable lenses and for compensation of their temporal distortions, and broadens the potential of tunable lenses also in high-speed applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...