Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 79(9): 3159-3166, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37013915

ABSTRACT

BACKGROUND: Diaphorina citri Kuwayama is one of the most destructive citrus pests worldwide. It is controlled mainly through applications of conventional insecticides. Methodologies used to estimate resistance to insecticides do not correlate with field efficacy, and do not provide timely and reliable information to make decisions at a site where spraying is needed. The use of diagnostic doses with 30-min exposure is proposed for estimating the resistance of D. citri to imidacloprid, spinosad, malathion and chlorpyrifos at the orchard level. RESULTS: Under laboratory conditions, we estimated the lowest doses that caused 100% mortality within 30 min of exposure (diagnostic dose) in a susceptible D. citri colony. The diagnostic doses for imidacloprid, spinosad, malathion and chlorpyrifos were 7.4, 4.2, 1.0 and 5.5 mg a.i. L-1 , respectively. Under field conditions, we applied the diagnostic doses to D. citri feeding on Citrus aurantifolia Swingle at five localities in Michoacan state, Mexico (Nueva Italia, Santo Domingo, El Varal, Gambara and El Ceñidor). Additionally, the field efficacy of these insecticides against these populations was evaluated. A significant correlation between field efficacy and mortality was observed with the diagnostic doses for imidacloprid, malathion and chlorpyrifos (R2 ≥ 0.93). The correlation for spinosad could not be estimated because the mortality caused by the diagnostic dose and its field efficacy at all study sites was consistently >98%. CONCLUSIONS: Field efficacy and resistance were estimated based on the field diagnostic doses with 30-min exposure for all tested insecticides. Consequently, growers and pest management technicians can estimate the performance of the evaluated insecticides at the orchard level and before insecticide application. © 2023 Society of Chemical Industry.


Subject(s)
Chlorpyrifos , Citrus , Hemiptera , Insecticides , Animals , Insecticides/pharmacology , Chlorpyrifos/pharmacology , Insecticide Resistance , Malathion
2.
J Econ Entomol ; 112(2): 792-802, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30535077

ABSTRACT

The fall armyworm, Spodoptera frugiperda (J. E. Smith), is one of the main pests of corn in many areas of the American continent. The reliance on pesticides to control fall armyworm has led to the development of insecticide resistance in many regions. We determined the resistance levels of fall armyworm to insecticides of different modes of action in fall armyworm populations from Puerto Rico and several Mexican states with different insecticide use patterns. Mexican populations that expressed higher resistance ratios (RR50) were: Sonora (20-fold to chlorpyriphos), Oaxaca (19-fold to permethrin), and Sinaloa (10-fold to flubendamide). The Puerto Rico population exhibited a remarkable field-evolved resistance to many pesticides. The RR50 to the insecticides tested were: flubendiamide (500-fold), chlorantraniliprole (160-fold), methomyl (223-fold), thiodicarb (124-fold), permethrin (48-fold), chlorpyriphos (47-fold), zeta-cypermethrin (35-fold), deltamethrin (25-fold), triflumuron (20-fold), spinetoram (14-fold). Spinosad (eightfold), emamectin benzoate and abamectin (sevenfold) displayed lower resistance ratio. However, these compounds are still effective to manage fall armyworm resistance in Puerto Rico. Fall armyworm populations from Mexico show different levels of susceptibility, which may reflect the heterogeneity of the pest control patterns in this country. The status of insecticide resistance in the fall armyworm from Puerto Rico indicates a challenging situation for the control of this pest with these insecticides in the close future. Lessons learned from this research might be applied in regions with recent invasions of fall armyworm in Africa.


Subject(s)
Insecticides , Africa , Animals , Insecticide Resistance , Mexico , Puerto Rico , Spodoptera
3.
Neotrop Entomol ; 39(3): 430-5, 2010.
Article in Spanish | MEDLINE | ID: mdl-20676518

ABSTRACT

In two field-collected populations of de Bemisia tabaci (Gennadius) B biotype previously selected with the neonicotinoid insecticide thiamethoxam (NEO-R, NEO-N), and a population susceptible to insecticides (SUSC), the level of response to the insecticide thiametoxam, as well as the life and fertility tables were determined. At LC95, the NEO-R population showed a resistance ratio (RR95) value of 8.8-fold, an intrinsic rate of increase (r m) of 0.72. The fitness of the NEO-R and NEO-N populations in relation to the SUSC was 1.5 and 2.0, respectively. The RR95 value for NEO-N was 1.9-fold; it's r m value was 0.082, while in the SUSC population was 0.041. The developmental time of egg and adult were longer in NEO-R population, while the nymph and pupa lasted longer in the NEO-N and SUSC populations. The developmental time was different in the three NEO-R, NEO-N, and SUSC populations with 19.7 d (315.84 degree days or dd), 15.7 d (250.4 dd) and 18.5 d (296.6 d), respectively. The populations previously selected with thiamethoxam did not reproduce faster than their susceptible counterpart.


Subject(s)
Hemiptera/drug effects , Insecticides/pharmacology , Nitro Compounds/pharmacology , Oxazines/pharmacology , Thiazoles/pharmacology , Animals , Hemiptera/classification , Hemiptera/physiology , Neonicotinoids , Thiamethoxam
4.
Neotrop Entomol ; 39(3): 436-40, 2010.
Article in Spanish | MEDLINE | ID: mdl-20676519

ABSTRACT

Spiromesifen is an insecticide that inhibits the synthesis of lipids and, in Mexico, its use against the Tomato-Potato Psyllid, Bactericera cockerelli (Sulc), on chili pepper (Capsicum annum), tomato (Lycopersicon sculentum) and potato (Solanum tuberosum) began in 2005; however more information is needed to understand its toxicity on this insect pest. The aim of this research was to determine the toxicity of spiromesifen against each of the biological stages of tomato-potato psyllid, its effect on fertility and viability of eggs deposited by treated females, as well as the female preference to lay eggs on treated and non treated plants. The relative toxicity at 95% mortality (highest LC95 value /LC95 value of the respective biological stage) of spiromesifen in egg, nymph 1, nymph 2, nymph 3, nymph 4, and nymph 5 were 517.5; 31316.2; 2950.1; 315.6; 18.2 and 1-fold, respectively. There were no differences in the toxicity of spiromesifen between adult males and females. The number of laid eggs was reduced as the spiromesifen concentration used to treat female increased and egg hatch was reduced in all tested doses. In the "no choice" test, females deposited 38.6+/-2.01 eggs by leaf of non treated chili pepper type jalapeño, while in the treated with 360 mg L(-1) we observed 0.3+/-0.08 eggs by leaf. In the "choice" test, the oviposition decreased as the dose increased. There were no eggs on plants treated with 2400 mg L(-1) of spiromesifen.


Subject(s)
Hemiptera/drug effects , Hemiptera/growth & development , Life Cycle Stages/drug effects , Spiro Compounds/toxicity , Animals , Female , Male
5.
Neotrop. entomol ; 39(3): 430-435, May-June 2010. tab, ilus
Article in Spanish | LILACS | ID: lil-556530

ABSTRACT

In two field-collected populations of de Bemisia tabaci (Gennadius) B biotype previously selected with the neonicotinoid insecticide thiamethoxam (NEO-R, NEO-N), and a population susceptible to insecticides (SUSC), the level of response to the insecticide thiametoxam, as well as the life and fertility tables were determined. At LC95, the NEO-R population showed a resistance ratio (RR95) value of 8.8-fold, an intrinsic rate of increase (r m) of 0.72. The fitness of the NEO-R and NEO-N populations in relation to the SUSC was 1.5 and 2.0, respectively. The RR95 value for NEO-N was 1.9-fold; it's r m value was 0.082, while in the SUSC population was 0.041. The developmental time of egg and adult were longer in NEO-R population, while the nymph and pupa lasted longer in the NEO-N and SUSC populations. The developmental time was different in the three NEO-R, NEO-N, and SUSC populations with 19.7 d (315.84 degree days or dd), 15.7 d (250.4 dd) and 18.5 d (296.6 d), respectively. The populations previously selected with thiamethoxam did not reproduce faster than their susceptible counterpart.


Subject(s)
Animals , Hemiptera/drug effects , Insecticides/pharmacology , Nitro Compounds/pharmacology , Oxazines/pharmacology , Thiazoles/pharmacology , Hemiptera/classification , Hemiptera/physiology
6.
Neotrop. entomol ; 39(3): 436-440, May-June 2010. tab, ilus
Article in Spanish | LILACS | ID: lil-556531

ABSTRACT

Spiromesifen is an insecticide that inhibits the synthesis of lipids and, in Mexico, its use against the Tomato-Potato Psyllid, Bactericera cockerelli (Sulc), on chili pepper (Capsicum annum), tomato (Lycopersicon sculentum) and potato (Solanum tuberosum) began in 2005; however more information is needed to understand its toxicity on this insect pest. The aim of this research was to determine the toxicity of spiromesifen against each of the biological stages of tomato-potato psyllid, its effect on fertility and viability of eggs deposited by treated females, as well as the female preference to lay eggs on treated and non treated plants. The relative toxicity at 95 percent mortality (highest LC95 value /LC95 value of the respective biological stage) of spiromesifen in egg, nymph 1, nymph 2, nymph 3, nymph 4, and nymph 5 were 517.5; 31316.2; 2950.1; 315.6; 18.2 and 1-fold, respectively. There were no differences in the toxicity of spiromesifen between adult males and females. The number of laid eggs was reduced as the spiromesifen concentration used to treat female increased and egg hatch was reduced in all tested doses. In the "no choice" test, females deposited 38.6 ± 2.01 eggs by leaf of non treated chili pepper type jalapeño, while in the treated with 360 mg L-1 we observed 0.3 ± 0.08 eggs by leaf. In the "choice" test, the oviposition decreased as the dose increased. There were no eggs on plants treated with 2400 mg L-1 of spiromesifen.


Subject(s)
Animals , Female , Male , Hemiptera/drug effects , Hemiptera/growth & development , Life Cycle Stages/drug effects , Spiro Compounds/toxicity
7.
Interciencia ; 32(4): 266-269, abr. 2007. tab
Article in Spanish | LILACS | ID: lil-493141

ABSTRACT

Se determinó la susceptibilidad a los insecticidas acetamiprid, cipermetrina, imidacloprid, pymetrozina y thiamethoxam en dos poblaciones de mosquita blanca, Bemisia tabaci (Gennadius), Biotipo B, colectadas en los estados de Baja California y Sinaloa, México. En relación a una población susceptible, a nivel de 50 por ciento de mortalidad, la proporción de resistencia (RR50) más elevada se presentó en la población de Sinaloa a cipermetrina (17,2x), pymetrozine (26,9x) e imidacloprid (42,8x). Sin embargo, a 95 por ciento de mortalidad, las dos poblaciones fueron susceptibles a los insecticidas evaluados.


Subject(s)
Agricultural Pests , Dust , Insecticides , Agriculture , Mexico , Venezuela
SELECTION OF CITATIONS
SEARCH DETAIL
...