Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7725, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001082

ABSTRACT

Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2V617F, CALRins5 or CALRdel52 peripheral blood allele burden ≥20% (EudraCT 2015-005497-38). 38 patients were recruited over 112w and 32 completed 24w-treatment. The study's A'herns success criteria were met as the primary outcome ( ≥ 50% reduction in mutant allele burden at 24w) was observed in 3/38 patients. Secondary outcomes included ≥25% reduction at 24w (5/38), ≥50% reduction at 12w (0/38), thrombotic events (2/38), toxicities, hematological response, proportion of patients in each IWG-MRT response category and ELN response criteria. As exploratory outcomes, baseline analysis of HSPC transcriptome segregates responders and non-responders, suggesting a predictive signature. In responder HSPCs, longitudinal analysis shows high baseline expression of JAK-STAT signaling and oxidative phosphorylation genes, which are downregulated by tamoxifen. We further demonstrate in preclinical studies that in JAK2V617F+ cells, 4-hydroxytamoxifen inhibits mitochondrial complex-I, activates integrated stress response and decreases pathogenic JAK2-signaling. These results warrant further investigation of tamoxifen in MPN, with careful consideration of thrombotic risk.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Hematopoietic Stem Cells/metabolism , Signal Transduction , Neoplasms/metabolism , Tamoxifen/therapeutic use , Tamoxifen/metabolism , Mutation , Calreticulin/genetics , Calreticulin/metabolism
2.
Nat Genet ; 55(9): 1531-1541, 2023 09.
Article in English | MEDLINE | ID: mdl-37666991

ABSTRACT

Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 'multihit' HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types.


Subject(s)
Leukemia , Multiomics , Humans , Neoplasm Proteins , Inflammation/genetics , Alleles , Leukemia/genetics , Tumor Suppressor Protein p53/genetics
3.
Nat Commun ; 14(1): 6062, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770432

ABSTRACT

Hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow are responsible for the balanced output of multiple short-lived blood cell lineages in steady-state and in response to different challenges. However, feedback mechanisms by which HSCs, through their niches, sense acute losses of specific blood cell lineages remain to be established. While all HSCs replenish platelets, previous studies have shown that a large fraction of HSCs are molecularly primed for the megakaryocyte-platelet lineage and are rapidly recruited into proliferation upon platelet depletion. Platelets normally turnover in an activation-dependent manner, herein mimicked by antibodies inducing platelet activation and depletion. Antibody-mediated platelet activation upregulates expression of Interleukin-1 (IL-1) in platelets, and in bone marrow extracellular fluid in vivo. Genetic experiments demonstrate that rather than IL-1 directly activating HSCs, activation of bone marrow Lepr+ perivascular niche cells expressing IL-1 receptor is critical for the optimal activation of quiescent HSCs upon platelet activation and depletion. These findings identify a feedback mechanism by which activation-induced depletion of a mature blood cell lineage leads to a niche-dependent activation of HSCs to reinstate its homeostasis.


Subject(s)
Interleukin-1 , Thrombocytopenia , Humans , Interleukin-1/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Megakaryocytes , Thrombocytopenia/metabolism
4.
Blood ; 141(11): 1316-1321, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36493342

ABSTRACT

Myelodysplastic neoplasms (MDSs) and chronic myelomonocytic leukemia (CMML) are clonal disorders driven by progressively acquired somatic mutations in hematopoietic stem cells (HSCs). Hypomethylating agents (HMAs) can modify the clinical course of MDS and CMML. Clinical improvement does not require eradication of mutated cells and may be related to improved differentiation capacity of mutated HSCs. However, in patients with established disease it is unclear whether (1) HSCs with multiple mutations progress through differentiation with comparable frequency to their less mutated counterparts or (2) improvements in peripheral blood counts following HMA therapy are driven by residual wild-type HSCs or by clones with particular combinations of mutations. To address these questions, the somatic mutations of individual stem cells, progenitors (common myeloid progenitors, granulocyte monocyte progenitors, and megakaryocyte erythroid progenitors), and matched circulating hematopoietic cells (monocytes, neutrophils, and naïve B cells) in MDS and CMML were characterized via high-throughput single-cell genotyping, followed by bulk analysis in immature and mature cells before and after AZA treatment. The mutational burden was similar throughout differentiation, with even the most mutated stem and progenitor clones maintaining their capacity to differentiate to mature cell types in vivo. Increased contributions from productive mutant progenitors appear to underlie improved hematopoiesis in MDS following HMA therapy.


Subject(s)
Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Humans , Leukemia, Myelomonocytic, Chronic/drug therapy , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/metabolism , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Hematopoietic Stem Cells/metabolism , Monocytes , Clone Cells
5.
Cancers (Basel) ; 14(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36497471

ABSTRACT

Epigenetic modifications, such as histone modifications and DNA methylation, are essential for ensuring the dynamic control of gene regulation in every cell type. These modifications are associated with gene activation or repression, depending on the genomic context and specific type of modification. In both cases, they are deposited and removed by epigenetic modifier proteins. In acute myeloid leukemia (AML), the function of these proteins is perturbed through genetic mutations (i.e., in the DNA methylation machinery) or translocations (i.e., MLL-rearrangements) arising during leukemogenesis. This can lead to an imbalance in the epigenomic landscape, which drives aberrant gene expression patterns. New technological advances, such as CRISPR editing, are now being used to precisely model genetic mutations and chromosomal translocations. In addition, high-precision epigenomic editing using dCas9 or CRISPR base editing are being used to investigate the function of epigenetic mechanisms in gene regulation. To interrogate these mechanisms at higher resolution, advances in single-cell techniques have begun to highlight the heterogeneity of epigenomic landscapes and how these impact on gene expression within different AML populations in individual cells. Combined, these technologies provide a new lens through which to study the role of epigenetic modifications in normal hematopoiesis and how the underlying mechanisms can be hijacked in the context of malignancies such as AML.

6.
Nat Commun ; 12(1): 7019, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857757

ABSTRACT

Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta-gonad-mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Erythroid Cells/metabolism , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Myeloid Progenitor Cells/metabolism , Vesicular Transport Proteins/genetics , Yolk Sac/metabolism , Animals , Cell Differentiation , Embryo, Mammalian , Enhancer of Zeste Homolog 2 Protein/deficiency , Epigenesis, Genetic , Erythroid Cells/cytology , Female , Fetus , Genes, Reporter , Hematopoiesis/genetics , Liver/cytology , Liver/growth & development , Liver/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mouse Embryonic Stem Cells/cytology , Myeloid Progenitor Cells/pathology , Primary Cell Culture , Vesicular Transport Proteins/metabolism , Wnt Signaling Pathway , Yolk Sac/cytology , Yolk Sac/growth & development , Red Fluorescent Protein
7.
J Exp Med ; 218(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33416891

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a poor-prognosis childhood leukemia usually caused by RAS-pathway mutations. The cellular hierarchy in JMML is poorly characterized, including the identity of leukemia stem cells (LSCs). FACS and single-cell RNA sequencing reveal marked heterogeneity of JMML hematopoietic stem/progenitor cells (HSPCs), including an aberrant Lin-CD34+CD38-CD90+CD45RA+ population. Single-cell HSPC index-sorting and clonogenic assays show that (1) all somatic mutations can be backtracked to the phenotypic HSC compartment, with RAS-pathway mutations as a "first hit," (2) mutations are acquired with both linear and branching patterns of clonal evolution, and (3) mutant HSPCs are present after allogeneic HSC transplant before molecular/clinical evidence of relapse. Stem cell assays reveal interpatient heterogeneity of JMML LSCs, which are present in, but not confined to, the phenotypic HSC compartment. RNA sequencing of JMML LSC reveals up-regulation of stem cell and fetal genes (HLF, MEIS1, CNN3, VNN2, and HMGA2) and candidate therapeutic targets/biomarkers (MTOR, SLC2A1, and CD96), paving the way for LSC-directed disease monitoring and therapy in this disease.


Subject(s)
Hematopoietic Stem Cells/pathology , Leukemia, Myelomonocytic, Juvenile/pathology , Animals , Biomarkers, Tumor/genetics , Cell Line , Female , Humans , Leukemia, Myelomonocytic, Juvenile/genetics , Male , Mice , Mutation/genetics , Neoplastic Stem Cells/pathology , Signal Transduction/genetics , Up-Regulation/genetics
8.
STAR Protoc ; 1(3): 100125, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377019

ABSTRACT

Single-cell RNA-sequencing technologies are ideally placed to resolve intratumoral heterogeneity. However, the lack of coverage across key mutation hotspots has precluded the correlation of genetic and transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a protocol for TARGETed high-sensitivity single-cell mutational analysis with extremely low allelic dropout rates, parallel RNA SEQuencing, and cell-surface proteomics. Here, we present a detailed step-by-step protocol for TARGET-seq, including troubleshooting tips, approaches for automation, and methods for high-throughput multiplexing of libraries. For complete details on the use and execution of this protocol, please refer to Rodriguez-Meira et al. (2019).


Subject(s)
DNA Mutational Analysis/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Base Sequence/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation/genetics , Exome Sequencing/methods
10.
Mol Cell ; 78(3): 477-492.e8, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32386542

ABSTRACT

Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.


Subject(s)
Hematopoiesis/physiology , Megakaryocytes/pathology , Primary Myelofibrosis/blood , Aged , Aged, 80 and over , Cell Differentiation , Female , Gene Expression Regulation , Hematopoiesis/genetics , Hematopoietic Stem Cells/pathology , High-Throughput Nucleotide Sequencing , Humans , Male , Megakaryocytes/physiology , Middle Aged , Mutation , Receptors, Immunologic/genetics , Single-Cell Analysis/methods
11.
Cancer Cell ; 37(5): 690-704.e8, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32330454

ABSTRACT

Acute erythroid leukemia (AEL) commonly involves both myeloid and erythroid lineage transformation. However, the mutations that cause AEL and the cell(s) that sustain the bilineage leukemia phenotype remain unknown. We here show that combined biallelic Cebpa and Gata2 zinc finger-1 (ZnF1) mutations cooperatively induce bilineage AEL, and that the major leukemia-initiating cell (LIC) population has a neutrophil-monocyte progenitor (NMP) phenotype. In pre-leukemic NMPs Cebpa and Gata2 mutations synergize by increasing erythroid transcription factor (TF) expression and erythroid TF chromatin access, respectively, thereby installing ectopic erythroid potential. This erythroid-permissive chromatin conformation is retained in bilineage LICs. These results demonstrate that synergistic transcriptional and epigenetic reprogramming by leukemia-initiating mutations can generate neomorphic pre-leukemic progenitors, defining the lineage identity of the resulting leukemia.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Lineage , Cell Transformation, Neoplastic/pathology , Erythroid Precursor Cells/pathology , GATA2 Transcription Factor/genetics , Leukemia, Erythroblastic, Acute/pathology , Mutation , Neutrophils/pathology , Aged , Alleles , Animals , Cell Differentiation , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Erythroid Precursor Cells/metabolism , Female , GATA1 Transcription Factor/genetics , Humans , Leukemia, Erythroblastic, Acute/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neutrophils/metabolism , Zinc Fingers
14.
Nat Commun ; 10(1): 2115, 2019 05 09.
Article in English | MEDLINE | ID: mdl-31073170

ABSTRACT

Approximately 30% of ERα breast cancer patients relapse with metastatic disease following adjuvant endocrine therapies. The connection between acquisition of drug resistance and invasive potential is poorly understood. In this study, we demonstrate that the type II keratin topological associating domain undergoes epigenetic reprogramming in aromatase inhibitors (AI)-resistant cells, leading to Keratin-80 (KRT80) upregulation. KRT80 expression is driven by de novo enhancer activation by sterol regulatory element-binding protein 1 (SREBP1). KRT80 upregulation directly promotes cytoskeletal rearrangements at the leading edge, increased focal adhesion and cellular stiffening, collectively promoting cancer cell invasion. Shearwave elasticity imaging performed on prospectively recruited patients confirms KRT80 levels correlate with stiffer tumors. Immunohistochemistry showed increased KRT80-positive cells at relapse and, using several clinical endpoints, KRT80 expression associates with poor survival. Collectively, our data uncover an unpredicted and potentially targetable direct link between epigenetic and cytoskeletal reprogramming promoting cell invasion in response to chronic AI treatment.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/pathology , Cytoskeleton/pathology , Keratins, Type II/genetics , Neoplasm Recurrence, Local/pathology , Sterol Regulatory Element Binding Protein 1/metabolism , Antineoplastic Agents, Hormonal/therapeutic use , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , Breast/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Movement/drug effects , Cell Movement/genetics , Cytoskeleton/genetics , Drug Resistance, Neoplasm/genetics , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Keratins, Type II/metabolism , MCF-7 Cells , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Prognosis , Protein Domains/genetics , Up-Regulation
15.
Haematologica ; 104(11): 2215-2224, 2019 11.
Article in English | MEDLINE | ID: mdl-30975913

ABSTRACT

Somatic mutations in acute myeloid leukemia are acquired sequentially and hierarchically. First, pre-leukemic mutations, such as t(8;21) that encodes AML1-ETO, are acquired within the hematopoietic stem cell (HSC) compartment, while signaling pathway mutations, including KRAS activating mutations, are late events acquired during transformation of leukemic progenitor cells and are rarely detectable in HSC. This raises the possibility that signaling pathway mutations are detrimental to clonal expansion of pre-leukemic HSC. To address this hypothesis, we used conditional genetics to introduce Aml1-ETO and K-RasG12D into murine HSC, either individually or in combination. In the absence of activated Ras, Aml1-ETO-expressing HSC conferred a competitive advantage. However, activated K-Ras had a marked detrimental effect on Aml1-ETO-expressing HSC, leading to loss of both phenotypic and functional HSC. Cell cycle analysis revealed a loss of quiescence in HSC co-expressing Aml1-ETO and K-RasG12D, accompanied by an enrichment in E2F and Myc target gene expression and depletion of HSC self-renewal-associated gene expression. These findings provide a mechanistic basis for the observed absence of KRAS signaling mutations in the pre-malignant HSC compartment.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoietic Stem Cells/metabolism , Mutation , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , RUNX1 Translocation Partner 1 Protein/genetics , RUNX1 Translocation Partner 1 Protein/metabolism , Animals , Cell Proliferation/genetics , Gene Expression , Gene Expression Profiling , Hematopoietic Stem Cells/pathology , Humans , Mice , Mice, Transgenic , Models, Animal , Models, Biological , Precancerous Conditions/genetics , Precancerous Conditions/metabolism
16.
Mol Cell ; 73(6): 1292-1305.e8, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30765193

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for resolving transcriptional heterogeneity. However, its application to studying cancerous tissues is currently hampered by the lack of coverage across key mutation hotspots in the vast majority of cells; this lack of coverage prevents the correlation of genetic and transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a method for the high-sensitivity detection of multiple mutations within single cells from both genomic and coding DNA, in parallel with unbiased whole-transcriptome analysis. Applying TARGET-seq to 4,559 single cells, we demonstrate how this technique uniquely resolves transcriptional and genetic tumor heterogeneity in myeloproliferative neoplasms (MPN) stem and progenitor cells, providing insights into deregulated pathways of mutant and non-mutant cells. TARGET-seq is a powerful tool for resolving the molecular signatures of genetically distinct subclones of cancer cells.


Subject(s)
Biomarkers, Tumor/genetics , DNA Mutational Analysis/methods , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Leukemia/genetics , Mutation , Sequence Analysis, RNA , Single-Cell Analysis , Humans , Jurkat Cells , K562 Cells , Reproducibility of Results , Schizosaccharomyces/genetics
17.
Mol Aspects Med ; 59: 85-94, 2018 02.
Article in English | MEDLINE | ID: mdl-28863981

ABSTRACT

The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application.


Subject(s)
Leukemia/pathology , Single-Cell Analysis/methods , Animals , Genomics/methods , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Humans
18.
Nat Med ; 23(6): 692-702, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28504724

ABSTRACT

Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.


Subject(s)
Blast Crisis/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Neoplastic Stem Cells/metabolism , Single-Cell Analysis , Adult , Aged , Chromatin Immunoprecipitation , Core Binding Factor Alpha 2 Subunit/genetics , Female , Flow Cytometry , Gene Library , Genes, abl/genetics , Humans , In Situ Hybridization, Fluorescence , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Analysis, RNA , Transcriptome , Young Adult
19.
Semin Cancer Biol ; 32: 3-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24530939

ABSTRACT

Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cellular Reprogramming/genetics , Neoplasms/genetics , Neoplastic Stem Cells , Oncogenes/genetics , Animals , Cell Differentiation/genetics , Disease Models, Animal , Humans , Mice , Models, Biological , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...