Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Int J Biol Macromol ; 253(Pt 4): 127010, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37734519

ABSTRACT

Novel materials using biowaste as adsorbents in wastewater treatment have been allocated considerable interest. Herein, we present the synthesis of different hydrogels of crosslinked polyacrylamide in presence of hemicelluloses with/ without bentonite, using a soft reaction condition. The structure of new hydrogels was characterized by spectroscopic, thermal and microscopic experiments. The semi-interpenetrated network with hemicelluloses: 10 %; acrylamide 79 %; bentonite 10 %; N,N,N',N'-tetramethylethylenediamine: 1 % allows reducing 20 % the use of non-renewable acrylamide, without changing its decomposition temperatures and keeping its water absorption capacity. This hydrogel was applied to dye removals, such as rhodamine B, methylene red and methylene blue in aqueous solutions. In the case of methylene blue, highest removal is observed with maximum adsorption of qmax = 140.66 mg/g, compared to material without hemicelluloses that only a qmax = 88.495 mg/g. The adsorption kinetics and equilibrium adsorption isotherms are in accordance with the pseudo-second-order kinetic model and Langmuir isotherm model, respectively. The developed hydrogel from hemicelluloses represents a potential alternative adsorbent for a sustainable system of sewage treatment.


Subject(s)
Hydrogels , Water Pollutants, Chemical , Hydrogels/chemistry , Methylene Blue/chemistry , Bentonite , Water , Acrylamides , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Coloring Agents/chemistry
2.
Int J Biol Macromol ; 211: 626-638, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35561858

ABSTRACT

Chemical modification in surface of cellulose nanofibrils CNFs (20 nm) from an endemic and non-significant value-added, Argentine bamboo, was developed. The modification in the CNFs was carried out with three simple routes using a low molecular weight polylactic acid synthesized in our laboratory (PLA1). The first step comprises of protection of the hydroxyl groups of PLA1 through a benzoylation (PLA1Bz). The next step consisted of the activation of carboxyl groups using thionyl chloride and the last reaction was the grafting of the modified PLA onto the CNFs (PLA1Bz-g-CNF). The covalently functionalization is confirmed by spectroscopically techniques as well as PLA1Bz-g-CNFs were characterized by thermal analyses. The PLA1Bz-g-CNFs were taken up such as nanocharges to improve properties of compatibilization and changing surface properties in films based on PLA. The comparison between the films with PLA1Bz-g-CNFs with respect to the physic mixture of the components (PLA1Bz/CNF), shows an improvement in the thermal, mechanical, and surface properties of the material, particularly when 5% of PLA1Bz-g-CNFs was added. The dispersive (γS D) component of film is increased in 36.1 mN/m respect to 29.3 mN/m from the films obtained with the physic mixture nanofibrils without modification and a plasticizing effect was noticed in the final material.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Surface Properties , Tensile Strength
3.
J Dent Res ; 100(4): 377-386, 2021 04.
Article in English | MEDLINE | ID: mdl-33073679

ABSTRACT

Patients with advanced salivary gland mucoepidermoid carcinoma (MEC) are treated with surgery and radiotherapy, as current systemic therapies are largely ineffective. As such, current treatment frequently leads to poor long-term survival due to locoregional recurrence or metastases. We have shown that salivary gland cancer stem cells (CSCs) are resistant to platinum-based chemotherapy and drive tumor progression. The purpose of this study was to investigate the effect of therapeutic inhibition of mTOR (mechanistic target of rapamycin) on resistance of CSCs to cisplatin, a prototypic platinum-based chemotherapeutic agent. Viability assays determined the effect of several inhibitors of PI3k/mTOR signaling (e.g., temsirolimus, BKM120, AZD8055, PF4708671) and/or cisplatin on survival of human MEC cells. The impact of mTOR inhibitors and/or cisplatin on MEC stemness was examined with salisphere assays, flow cytometry for ALDH/CD44 (CSC markers for MEC), and Western blots for Bmi-1 expression (marker of stem cell self-renewal). Salivary gland MEC patient-derived xenografts were used to examine the effect of cisplatin and/or temsirolimus on CSCs in vivo. We observed that cisplatin induced mTOR and S6K1 phosphorylation, increased the number and size of MEC salispheres, and induced Bmi-1 expression and the fraction of CSCs in MEC models in vitro. Cisplatin also increased the fraction of CSCs in vivo. In contrast, mTOR inhibition (e.g., temsirolimus) blocked cisplatin-induced Bmi-1 expression and salisphere formation in vitro. Remarkably, temsirolimus slowed down tumor growth and decreased the fraction of CSCs (P < 0.05) even in presence of cisplatin in a short-term in vivo experiment. Collectively, these results demonstrate that therapeutic inhibition of mTOR ablates cytotoxic-resistant CSCs, and they suggest that a combination of an mTOR inhibitor and platinum-based chemotherapy might be beneficial to patients with salivary gland mucoepidermoid carcinoma.


Subject(s)
Cisplatin , Salivary Gland Neoplasms , Cell Line, Tumor , Cisplatin/pharmacology , Humans , Neoplasm Recurrence, Local , Neoplastic Stem Cells , Salivary Gland Neoplasms/drug therapy , Salivary Glands , TOR Serine-Threonine Kinases
4.
Acta Ortop Mex ; 25(4): 246-52, 2011.
Article in Spanish | MEDLINE | ID: mdl-22509650

ABSTRACT

Knowledge of the anatomy of the elbow joint has become intricate due to the advent of magnetic resonance imaging (MRI) techniques, as they are superior to represent the different soft tissues. This advantage allows evaluating in detail the increasingly frequent pathologic processes that occur in high performance athletes. The ideal MRI technique includes having the patient in a comfortable position, using an appropriate surface antenna and the right sequences in the appropriate planes depending on the entity. Being familiar with the normal elbow anatomy is crucial to properly identify the pathology and avoid potential diagnostic errors.


Subject(s)
Elbow Joint/anatomy & histology , Magnetic Resonance Imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...