Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 14: 1281045, 2023.
Article in English | MEDLINE | ID: mdl-38027024

ABSTRACT

This work aimed to discover protein tyrosine phosphatase 1B (PTP1B) inhibitors from a small molecule library of natural products (NPs) derived from selected Mexican medicinal plants and fungi to find new hits for developing antidiabetic drugs. The products showing similar IC50 values to ursolic acid (UA) (positive control, IC50 = 26.5) were considered hits. These compounds were canophyllol (1), 5-O-(ß-D-glucopyranosyl)-7-methoxy-3',4'-dihydroxy-4-phenylcoumarin (2), 3,4-dimethoxy-2,5-phenanthrenediol (3), masticadienonic acid (4), 4',5,6-trihydroxy-3',7-dimethoxyflavone (5), E/Z vermelhotin (6), tajixanthone hydrate (7), quercetin-3-O-(6″-benzoyl)-ß-D-galactoside (8), lichexanthone (9), melianodiol (10), and confusarin (11). According to the double-reciprocal plots, 1 was a non-competitive inhibitor, 3 a mixed-type, and 6 competitive. The chemical space analysis of the hits (IC50 < 100 µM) and compounds possessing activity (IC50 in the range of 100-1,000 µM) with the BIOFACQUIM library indicated that the active molecules are chemically diverse, covering most of the known Mexican NPs' chemical space. Finally, a structure-activity similarity (SAS) map was built using the Tanimoto similarity index and PTP1B absolute inhibitory activity, which allows the identification of seven scaffold hops, namely, compounds 3, 5, 6, 7, 8, 9, and 11. Canophyllol (1), on the other hand, is a true analog of UA since it is an SAR continuous zone of the SAS map.

2.
FEBS J ; 290(18): 4496-4512, 2023 09.
Article in English | MEDLINE | ID: mdl-37178351

ABSTRACT

Substrate-binding proteins (SBPs) are used by organisms from the three domains of life for transport and signalling. SBPs are composed of two domains that collectively trap ligands with high affinity and selectivity. To explore the role of the domains and the integrity of the hinge region between them in the function and conformation of SBPs, here, we describe the ligand binding, conformational stability and folding kinetics of the Lysine Arginine Ornithine (LAO) binding protein from Salmonella thiphimurium and constructs corresponding to its two independent domains. LAO is a class II SBP formed by a continuous and a discontinuous domain. Contrary to the expected behaviour based on their connectivity, the discontinuous domain shows a stable native-like structure that binds l-arginine with moderate affinity, whereas the continuous domain is barely stable and shows no detectable ligand binding. Regarding folding kinetics, studies of the entire protein revealed the presence of at least two intermediates. While the unfolding and refolding of the continuous domain exhibited only a single intermediate and simpler and faster kinetics than LAO, the folding mechanism of the discontinuous domain was complex and involved multiple intermediates. These findings suggest that in the complete protein the continuous domain nucleates folding and that its presence funnels the folding of the discontinuous domain avoiding nonproductive interactions. The strong dependence of the function, stability and folding pathway of the lobes on their covalent association is most likely the result of the coevolution of both domains as a single unit.


Subject(s)
Carrier Proteins , Protein Folding , Kinetics , Lysine , Ligands , Laos , Protein Denaturation , Thermodynamics , Protein Conformation
3.
Physiol Plant ; 174(6): e13831, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36444477

ABSTRACT

Plant responses to phosphate starvation (-Pi) are very well characterized at the biochemical and molecular levels. The expression of thousands of genes is modified under this stress condition, depending on the action of Phosphate starvation response 1 (PHR1). Existing data indicate that neither the PHR1 transcript nor the quantity or localization of its protein increase during nutrient stress, raising the question of how its activity is regulated. Here, we present data showing that SnRK1 kinase is able to phosphorylate some phosphate starvation response proteins (PSRs), including PHR1. Based on a model of the three-dimensional structure of the catalytic subunit SnRK1α1, docking simulations predicted the binding modes of peptides from PHT1;8, PHO1 and PHR1 with SnRK1. PHR1 recombinant protein interacted in vitro with the catalytic subunits SnRK1α1 and SnRK1α2. A BiFC assay corroborated the in vivo interaction between PHR1 and SnRK1α1 in the cytoplasm and nucleus. Analysis of phosphorylated residues suggested the presence of one phosphorylated site containing the SnRK1 motif at S11, and mutation in this residue disrupted the incorporation of 32 P, suggesting that it is a major phosphorylation site. Electrophoretic mobility shift assay results indicated that the binding of PHR1 to P1BS motifs was not influenced by phosphorylation. Importantly, transient expression assays in Arabidopsis protoplasts showed a decrease in PHR1 activity in contrast with the S11A mutant, suggesting a role for Ser11 as a negative regulatory phosphorylation site. Taken together, these findings suggest that phosphorylation of PHR1 at Ser11 is a mechanism to control the PHR1-mediated adaptive response to -Pi.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/metabolism , Phosphorylation , Arabidopsis/metabolism , Phosphates , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
4.
Phytochemistry ; 203: 113410, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36030904

ABSTRACT

An infusion from the aerial parts of Justicia spicigera Schltdl., an herb commonly used to treat diabetes, inhibited the activity of protein tyrosine phosphatase 1B (PTP1B). Two undescribed compounds, 2-N-(p-coumaroyl)-3H-phenoxazin-3-one, and 3″-O-acetyl-kaempferitrin, along with kaempferitrin, kaempferol 7-O-α-L-rhamnopyranoside, perisbivalvine B and 2,5-dimethoxy-p-benzoquinone were isolated from the active extract. Their structures were elucidated by a combination of spectroscopic and spectrometric methods. The isolates were evaluated for their inhibitory activity against PTP1B; the most active compounds were 2-N-(p-coumaroyl)-3H-phenoxazin-3-one, and perisbivalvine B with IC50 values of 159.1 ± 0.02 µM and 106.6 ± 0.01 µM, respectively. However, perisbivalvine B was unstable. Kinetic analysis of 2-N-(p-coumaroyl)-3H-phenoxazin-3-one and 2,5-dimethoxy-p-benzoquinone (obtained in good amounts) indicated that both compounds behaved as parabolic competitive inhibitors and bind to the enzyme forming complexes with 1:1 and 1:2 stoichiometry. Docking of 2-N-(p-coumaroyl)-3H-phenoxazin-3-one and 2,5-dimethoxy-p-benzoquinone to PTP1B1-400 predicted a good affinity of these compounds for PTP1B catalytic site and demonstrated that the binding of a second ligand is sterically possible. The 1:2 complex was also supported by the second docking analysis, which predicted an important contribution of π-stacking interactions to the stability of these 1:2 complexes. Finally, an UHPLC-MS method was developed and validated to quantify the content of kaempferitrin in the infusion of the plant.


Subject(s)
Acanthaceae , Justicia , Benzoquinones , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Kaempferols/pharmacology , Kinetics , Ligands , Molecular Docking Simulation , Plant Extracts/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1
5.
J Struct Biol ; 212(1): 107578, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32682729

ABSTRACT

Thioredoxins are regulatory proteins that reduce disulfide bonds on target proteins. NaTrxh, which belongs to the plant thioredoxin family h subgroup 2, interacts and reduces the S-RNase enhancing its ribonuclease activity seven-fold, resulting an essential protein for pollen rejection inNicotiana.Here, the crystal structure of NaTrxh at 1.7 Å by X-ray diffraction is reported. NaTrxh conserves the typical fold observed in other thioredoxins from prokaryotes and eukaryotes, but it contains extensions towards both N- and C-termini.The NaTrxh N-terminal extension participates in the reduction of S-RNase, and in the structure reported here, this is orientated towards the reactive site. The interaction between SF11-RNase and the NaTrxh N-terminal was simulated and the short-lived complex observed lasted for a tenth of ns. Moreover, we identified certain amino acids as SF11-RNase-E155 and NaTrxh-M104 as good candidates to contribute to the stability of the complex. Furthermore, we simulated the reduction of the C153-C186 SF11-RNase disulfide bond and observed subtle changes that affect the entire core, which might explain the increase in the ribonuclease activity of S-RNase when it is reduced by NaTrxh.


Subject(s)
Nicotiana/metabolism , Plant Proteins/metabolism , Ribonucleases/metabolism , Binding Sites/physiology , Eukaryota/metabolism , Prokaryotic Cells/metabolism , Protein Transport/physiology
6.
Physiol Plant ; 165(3): 632-643, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29766514

ABSTRACT

Legume seed development represents a high demand for energy and metabolic resources to support the massive synthesis of starch and proteins. However, embryo growth occurs in an environment with reduced O2 that forces the plant to adapt its metabolic activities to maximize efficient energy use. SNF1-related protein kinase1 (SnRK1) is a master metabolic regulator needed for cells adaptation to conditions that reduce energy availability, and its activity is needed for the successful development of seeds. In bean embryo extracts, SnRK1 can be separated by anion exchange chromatography into two pools: one where the catalytic subunit is phosphorylated (SnRK1-p) and another with reduced phosphorylation (SnRK1-np). The phosphorylation of the catalytic subunit produces a large increase in SnRK1 activity but has a minor effect in determining its sensitivity to metabolic inhibitors such as trehalose 6-P (T6P), ADP-glucose (ADPG), glucose 1-P (G1P) and glucose 6-P (G6P). In Arabidopsis thaliana, upstream activating kinases (SnAK) phosphorylate the SnRK1 catalytic subunit at T175/176, promoting and enhancing its activity. Recombinant Phaseolus vulgaris homologous to SnAK proteins (PvSnAK), can phosphorylate and activate the catalytic domains of the α-subunits of Arabidopsis, as well as the SnRK1-np pool purified from bean embryos. While the phosphorylation process is extremely efficient for catalytic domains, the phosphorylation of the SnRK1-np complex was less effective but produced a significant increase in activity. The presence of SnRK1-np could contribute to a quick response to unexpected adverse conditions. However, in addition to PvSnAK kinases, other factors might contribute to regulating the activation of SnRK1.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Catalytic Domain , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phaseolus/genetics , Phaseolus/metabolism , Phosphorylation/genetics , Phosphorylation/physiology
7.
PLoS One ; 13(9): e0204711, 2018.
Article in English | MEDLINE | ID: mdl-30256846

ABSTRACT

Few land plants can synthesize and accumulate the osmoprotectant glycine betaine (GB) even though this metabolic trait has major adaptive importance given the prevalence of drought, hypersaline soils or cold. GB is synthesized from choline in two reactions catalyzed by choline monooxygenases (CMOs) and enzymes of the family 10 of aldehyde dehydrogenases (ALDH10s) that gained betaine aldehyde dehydrogenase activity (BADH). Homolog genes encoding CMO and ALDH10 enzymes are present in all known land plant genomes, but since GB-non-accumulators plants lack the BADH-type ALDH10 isozyme, they would be expected to also lack the CMO activity to avoid accumulation of the toxic betaine aldehyde. To explore CMOs substrate specificity, we performed amino acid sequence alignments, phylogenetic analysis, homology modeling and docking simulations. We found that plant CMOs form a monophyletic subfamily within the Rieske/mononuclear non-heme oxygenases family with two clades: CMO1 and CMO2, the latter diverging from CMO1 after gene duplication. CMO1 enzymes are present in all plants; CMO2s only in the Amaranthaceae high-GB-accumulators plants. CMO2s, and particularly their mononuclear non-heme iron domain where the active site is located, evolved at a faster rate than CMO1s, which suggests positive selection. The homology model and docking simulations of the spinach CMO2 enzyme showed at the active site three aromatic residues forming a box with which the trimethylammonium group of choline could interact through cation-π interactions, and a glutamate, which also may interact with the trimethylammonium group through a charge-charge interaction. The aromatic box and the carboxylate have been shown to be critical for choline binding in other proteins. Interestingly, these residues are conserved in CMO2 proteins but not in CMO1 proteins, where two of these aromatic residues are leucine and the glutamate is asparagine. These findings reinforce our proposal that the CMO1s physiological substrate is not choline but a still unknown metabolite.


Subject(s)
Amaranthaceae/genetics , Oxygenases/genetics , Phylogeny , Plant Proteins/genetics , Amaranthaceae/chemistry , Amino Acid Sequence , Conserved Sequence , Evolution, Molecular , Molecular Docking Simulation , Oxygenases/chemistry , Plant Proteins/chemistry , Protein Domains , Sequence Alignment , Structural Homology, Protein
8.
Plant J ; 96(1): 163-175, 2018 10.
Article in English | MEDLINE | ID: mdl-30003611

ABSTRACT

SnRK1 is a protein kinase complex that is involved in several aspects of plant growth and development. There are published data indicative of a participation of SnRK1 in the regulation of the synthesis and degradation of starch, although the molecular mechanism is not known. In this work, we performed electron microscopy to explore the in vivo localization of the regulatory and catalytic subunits that constitute the SnRK1 complex. The results indicated that all the subunits are present in the chloroplast and, in particular, the SnRK1 ßγ and SnRK1 ß3 subunits are associated with starch. Furthermore, the regulatory subunits bind maltose, a relevant product of starch degradation. The kinase activity of immunoprecipitated complexes containing the ßγ regulatory subunit was positively regulated by maltose only in the complexes obtained from Arabidopsis leaves collected at dusk. Recombinant complexes with the SnRK1α1 catalytic subunit, SnRK1ßγ and three different ß subunits showed that maltose only had an effect on a complex formed with the ß3 subunit. Truncation of the CBM domain form SnRK1 ßγ abolished the maltose activation of the complex and the activity was significantly reduced, indicating that the CBM is a positive regulator of SnRK1. A model of the SnRK1α1/ßγ/ß3 complex suggests the presence of two putative maltose-binding sites, both involving ligand interactions with the ßγ subunit and the α subunit.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Maltose/metabolism , Protein Serine-Threonine Kinases/metabolism , Carbohydrate Metabolism , Protein Structure, Tertiary
9.
Protein Sci ; 27(5): 957-968, 2018 05.
Article in English | MEDLINE | ID: mdl-29524280

ABSTRACT

Computational protein design is still a challenge for advancing structure-function relationships. While recent advances in this field are promising, more information for genuine predictions is needed. Here, we discuss different approaches applied to install novel glutamine (Gln) binding into the Lysine/Arginine/Ornithine binding protein (LAOBP) from Salmonella typhimurium. We studied the ligand binding behavior of two mutants: a binding pocket grafting design based on a structural superposition of LAOBP to the Gln binding protein QBP from Escherichia coli and a design based on statistical coupled positions. The latter showed the ability to bind Gln even though the protein was not very stable. Comparison of both approaches highlighted a nonconservative shared point mutation between LAOBP_graft and LAOBP_sca. This context dependent L117K mutation in LAOBP turned out to be sufficient for introducing Gln binding, as confirmed by different experimental techniques. Moreover, the crystal structure of LAOBP_L117K in complex with its ligand is reported.


Subject(s)
Amino Acids/chemistry , Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Salmonella typhimurium/chemistry , Bacterial Proteins/genetics , Binding Sites , Carrier Proteins/genetics , Ligands , Models, Molecular , Mutation , Protein Conformation , Thermodynamics
10.
Plant Sci ; 267: 11-19, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29362089

ABSTRACT

Pyrophosphate (PPi) is produced as byproduct of biosynthesis in the cytoplasm, nucleus, mitochondria and chloroplast, or in the tonoplast and Golgi by membrane-bound H+-pumping pyrophosphatases (PPv). Inorganic pyrophosphatases (E.C. 3.6.1.1; GO:0004427) impulse various biosynthetic reactions by recycling PPi and are essential to living cells. Soluble and membrane-bound enzymes of high specificity have evolved in different protein families and multiple pyrophosphatases are encoded in all plant genomes known to date. The soluble proteins are present in cytoplasm, extracellular space, inside chloroplasts, and perhaps inside mitochondria, nucleus or vacuoles. The cytoplasmic isoforms may compete for PPi with the PPv enzymes and how PPv and soluble activities are controlled is currently unknown, yet the cytoplasmic PPi concentration is high and fairly constant. Manipulation of the PPi metabolism impacts primary metabolism and vice versa, indicating a tight link between PPi levels and carbohydrate metabolism. These enzymes appear to play a role in germination, development and stress adaptive responses. In addition, the transgenic overexpression of PPv has been used to enhance plant tolerance to abiotic stress, but the reasons behind this tolerance are not completely understood. Finally, the relationship of PPi to stress suggest a currently unexplored link between PPi and secondary metabolism.


Subject(s)
Diphosphates/metabolism , Plants/genetics , Pyrophosphatases/genetics , Secondary Metabolism/genetics , Plants/metabolism , Pyrophosphatases/metabolism , Stress, Physiological
11.
Plant Physiol ; 175(3): 1105-1120, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28874520

ABSTRACT

In Solanaceae, the S-specific interaction between the pistil S-RNase and the pollen S-Locus F-box protein controls self-incompatibility (SI). Although this interaction defines the specificity of the pollen rejection response, the identification of three pistil essential modifier genes unlinked to the S-locus (HT-B, 120K, and NaStEP) unveils a higher degree of complexity in the pollen rejection pathway. We showed previously that NaStEP, a stigma protein with homology with Kunitz-type protease inhibitors, is essential to SI in Nicotiana spp. During pollination, NaStEP is taken up by pollen tubes, where potential interactions with pollen tube proteins might underlie its function. Here, we identified NaSIPP, a mitochondrial protein with phosphate transporter activity, as a novel NaStEP-interacting protein. Coexpression of NaStEP and NaSIPP in pollen tubes showed interaction in the mitochondria, although when expressed alone, NaStEP remains mostly cytosolic, implicating NaSIPP-mediated translocation of NaStEP into the organelle. The NaSIPP transcript is detected specifically in mature pollen of Nicotiana spp.; however, in self-compatible plants, this gene has accumulated mutations, so its coding region is unlikely to produce a functional protein. RNA interference suppression of NaSIPP in Nicotiana spp. pollen grains disrupts the SI by preventing pollen tube inhibition. Taken together, our results are consistent with a model whereby the NaStEP and NaSIPP interaction, in incompatible pollen tubes, might destabilize the mitochondria and contribute to arrest pollen tube growth.


Subject(s)
Mitochondrial Proteins/metabolism , Nicotiana/metabolism , Phosphate Transport Proteins/metabolism , Plant Proteins/metabolism , Self-Incompatibility in Flowering Plants , Gene Expression Regulation, Plant , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Models, Molecular , Mutation/genetics , Phosphate Transport Proteins/chemistry , Plant Cells/metabolism , Plant Proteins/chemistry , Pollen Tube/metabolism , Protein Binding , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Subcellular Fractions/metabolism , Nicotiana/genetics
12.
Plant Sci ; 263: 116-125, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28818366

ABSTRACT

The SnRK1 complexes in plants belong to the family of AMPK/SNF1 kinases, which have been associated with the control of energy balance, in addition to being involved in the regulation of other aspects of plant growth and development. Analysis of complex formation indicates that increased activity is achieved when the catalytic subunit is phosphorylated and bound to regulatory subunits. SnRK1.1 subunit activity is higher than that of SnRK1.2, which also exhibits reduced activation due to the regulatory subunits. The catalytic phosphomimetic subunits (T175/176D) do not exhibit high activity levels, which indicate that the amino acid change does not produce the same effect as phosphorylation. Based on the mammalian AMPK X-ray structure, the plant SnRK1.1/AKINßγ-ß3 was modeled by homology modeling and Molecular Dynamics simulations (MD). The model predicted an intimate and extensive contact between a hydrophobic region of AKINßγ and the ß3 subunit. While the AKINßγ prediction retains the 4 CBS domain organization of the mammalian enzyme, significant differences are found in the putative nucleotide binding pockets. Docking and MD studies identified two sites between CBS 3 and 4 which may bind adenine nucleotides, but only one appears to be functional, as judging from the predicted binding energies. The recombinant AKINßγ-ßs complexes were found to bind adenine nucleotides with dissociation constant (Kd) in the range of the AMP low affinity site in AMPK. The saturation binding data was consistent with a one-site model, in agreement with the in silico calculations. As has been suggested previously, the effect of AMP was found to slow down dephosphorylation but did not influence activity.


Subject(s)
Adenine Nucleotides/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Escherichia coli/enzymology , Models, Structural , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Arabidopsis/genetics , Catalytic Domain , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins , Transcription Factors/metabolism
13.
J Cell Biochem ; 118(5): 1164-1173, 2017 05.
Article in English | MEDLINE | ID: mdl-27684057

ABSTRACT

9-[(3-chloro)phenylamine]-2-[3-(diethylamine)propylamine]thiazolo[5,4-b]quinolone (D3ClP) is a bioisostere of N-(4-(acridin-9-ylamino)-3-methoxyphenyl)methanesulfonamide (m-AMSA) a DNA topoisomerase II inhibitor with proven cytotoxic activity and known to induce DNA damage and apoptotic cell death in K562 cells. However, recent evidence is not consistent with DNA topoisomerase II (DNA TOP2) as the primary target of D3ClP, in contrast to m-AMSA. We provide evidence of histone γH2AX phosphorylation at Ser135 in HeLa cells treated with D3ClP, a marker of DNA double strand repair through Mre11-Rad50-Nbs1 (MRN) pathway. Using two-dimensional gel electrophoresis and mass spectrometry, the upregulation of the protein GRP78, the cleavage of Cytokeratin 18, and the downregulation of prothymosine, calumenin, and the α chain of the nascent polypeptide associated complex were observed in HeLa cells treated with D3ClP. An increase in GRP78 has been related with the onset and progression of the unfolded protein response (UPR), a process aimed to reduce endoplasmic reticulum (ER) stress and protein misfolding. The IRE1-α dependent splicing of mRNA encoding X-box binding protein 1 was detected. Microtubule-associated Proteins 1A/1B, Light Chain 3-II (LC3b-II) accumulation was observed, and suggest some involvement of autophagy. The production of the pro-apoptotic protein DNA-damage-inducible protein 153 (GADD-153) was also detected. These results, are consistent with the induction of the UPR and the DNA-Damage Response in D3ClP-treated HeLa cells, and are also consistent with a concurrent apoptotic cell death. J. Cell. Biochem. 118: 1164-1173, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Aminoquinolines/pharmacology , DNA Damage , Proteomics/methods , Thiazoles/pharmacology , Unfolded Protein Response/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , HeLa Cells , Histones/metabolism , Humans , Phosphorylation , Proteome/drug effects , Serine/metabolism , Transcription Factor CHOP/metabolism
14.
Plant Sci ; 253: 229-242, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27968992

ABSTRACT

Pyrophosphate is a byproduct of macromolecular biosynthesis and its degradation gives a thermodynamic impulse to cell growth. Soluble inorganic pyrophosphatases (PPa) are present in all living cells, but in plants and other Eukaryotes membrane-bound H+-pumping pyrophosphatases may compete with these soluble counterparts for the substrate. In Arabidopsis thaliana there are six genes encoding for classic family I PPa isoforms, five cytoplasmic, and one considered to be organellar. Here, six transgenic stable A. thaliana lines, each expressing one of the PPa isoforms from this same plant species in fusion with a fluorescent protein, were obtained and analyzed under confocal and immunogold transmission electron microscopy. The results confirmed the cytoplasmic localization for isoforms 1-5, and showed an exclusive chloroplastic localization for isoform 6. In contrast to previous reports, the data presented here revealed a differential distribution pattern for the isoforms 1 and 5, in comparison to isoforms 2 and 3, and also the presence of isoform 4 in the intercellular space and cell wall, in addition to its presence in cytoplasm. To the best of our knowledge, this is the first report of a PPa family I protein localized in the intercellular space in plants.


Subject(s)
Arabidopsis/enzymology , Pyrophosphatases/metabolism , Amino Acid Sequence , Arabidopsis/ultrastructure , Isoenzymes/metabolism , Molecular Sequence Data , Plants, Genetically Modified
15.
J Biomol Struct Dyn ; 34(1): 78-91, 2016.
Article in English | MEDLINE | ID: mdl-25702612

ABSTRACT

In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca(2+)-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the "open" and "closed" conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM's inhibitors correlated well with available experimental data as the r(2) obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca(2+)-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca(2+)-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca(2+)-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.


Subject(s)
Calcium/chemistry , Calmodulin/chemistry , Ligands , Protein Conformation/drug effects , Benzoxazoles , Binding Sites , Calcium/metabolism , Calmodulin/antagonists & inhibitors , Calmodulin/metabolism , Maleimides , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Thermodynamics
16.
BMC Plant Biol ; 14: 147, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24886483

ABSTRACT

BACKGROUND: NaTrxh, a thioredoxin type h, shows differential expression between self-incompatible and self-compatible Nicotiana species. NaTrxh interacts in vitro with S-RNase and co-localizes with it in the extracellular matrix of the stylar transmitting tissue. NaTrxh contains N- and C-terminal extensions, a feature shared by thioredoxin h proteins of subgroup 2. To ascertain the function of these extensions in NaTrxh secretion and protein-protein interaction, we performed a deletion analysis on NaTrxh and fused the resulting variants to GFP. RESULTS: We found an internal domain in the N-terminal extension, called Nß, that is essential for NaTrxh secretion but is not hydrophobic, a canonical feature of a signal peptide. The lack of hydrophobicity as well as the location of the secretion signal within the NaTrxh primary structure, suggest an unorthodox secretion route for NaTrxh. Notably, we found that the fusion protein NaTrxh-GFP(KDEL) is retained in the endoplasmic reticulum and that treatment of NaTrxh-GFP-expressing cells with Brefeldin A leads to its retention in the Golgi, which indicates that NaTrxh uses, to some extent, the endoplasmic reticulum and Golgi apparatus for secretion. Furthermore, we found that Nß contributes to NaTrxh tertiary structure stabilization and that the C-terminus functions in the protein-protein interaction with S-RNase. CONCLUSIONS: The extensions contained in NaTrxh sequence have specific functions on the protein. While the C-terminus directly participates in protein-protein interaction, particularly on its interaction with S-RNase in vitro; the N-terminal extension contains two structurally different motifs: Nα and Nß. Nß, the inner domain (Ala-17 to Pro-27), is essential and enough to target NaTrxh towards the apoplast. Interestingly, when it was fused to GFP, this protein was also found in the cell wall of the onion cells. Although the biochemical features of the N-terminus suggested a non-classical secretion pathway, our results provided evidence that NaTrxh at least uses the endoplasmic reticulum, Golgi apparatus and also vesicles for secretion. Therefore, the Nß domain sequence is suggested to be a novel signal peptide.


Subject(s)
Nicotiana/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Ribonucleases/metabolism , Thioredoxins/chemistry , Thioredoxins/metabolism , Amino Acid Motifs , Cell Wall/metabolism , Cell Wall/ultrastructure , Endoplasmic Reticulum/metabolism , Extracellular Matrix/metabolism , Golgi Apparatus/metabolism , Green Fluorescent Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Intracellular Membranes/metabolism , Protein Binding , Protein Stability , Protein Structure, Tertiary , Protein Transport , Secretory Pathway , Structure-Activity Relationship , Nicotiana/ultrastructure
17.
J Mol Recognit ; 26(4): 165-74, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23456740

ABSTRACT

Protein-protein interactions play central roles in physiological and pathological processes. The bases of the mechanisms of drug action are relevant to the discovery of new therapeutic targets. This work focuses on understanding the interactions in protein-protein-ligands complexes, using proteins calmodulin (CaM), human calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1A active human (PDE1A), and myosin light chain kinase (MLCK) and ligands αII-spectrin peptide (αII-spec), and two inhibitors of CaM (chlorpromazine (CPZ) and malbrancheamide (MBC)). The interaction was monitored with a fluorescent biosensor of CaM (hCaM M124C-mBBr). The results showed changes in the affinity of CPZ and MBC depending on the CaM-protein complex under analysis. For the Ca(2+) -CaM, Ca(2+) -CaM-PDE1A, and Ca(2+) -CaM-MLCK complexes, CPZ apparent dissociation constants (Kds ) were 1.11, 0.28, and 0.55 µM, respectively; and for MBC Kds were 1.43, 1.10, and 0.61 µM, respectively. In competition experiments the addition of calmodulin binding peptide 1 (αII-spec) to Ca(2+) -hCaM M124C-mBBr quenched the fluorescence (Kd = 2.55 ± 1.75 pM) and the later addition of MBC (up to 16 µM) did not affect the fluorescent signal. Instead, the additions of αII-spec to a preformed Ca(2+) -hCaM M124C-mBBr-MBC complex modified the fluorescent signal. However, MBC was able to displace the PDE1A and MLCK from its complex with Ca(2+) -CaM. In addition, docking studies were performed for all complexes with both ligands showing an excellent correlation with experimental data. These experiments may help to explain why in vivo many CaM drugs target prefer only a subset of the Ca(2+) -CaM regulated proteins and adds to the understanding of molecular interactions between protein complexes and small ligands.


Subject(s)
Calmodulin/chemistry , Chlorpromazine/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 1/chemistry , Indole Alkaloids/chemistry , Myosin-Light-Chain Kinase/chemistry , Calcium/chemistry , Calmodulin/antagonists & inhibitors , Drug Discovery , Humans , Molecular Docking Simulation , Protein Binding , Spectrometry, Fluorescence
18.
J Steroid Biochem Mol Biol ; 134: 45-50, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23085610

ABSTRACT

The naturally occurring dinorcholanic lactone vespertilin and two other non-natural derivatives bearing the 5α-hydroxy-6-oxo moiety were synthesized starting from the readily available steroid sapogenin diosgenin. The obtained compounds showed plant growth promoting activity in the bean's second internode elongation assay.


Subject(s)
Fabaceae/growth & development , Lactones/chemistry , Lactones/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/metabolism , Diosgenin/chemistry , Fabaceae/chemistry , Fabaceae/metabolism , Lactones/chemical synthesis , Plant Growth Regulators/chemical synthesis , Sapogenins/chemistry , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism
19.
Plant Physiol ; 161(1): 97-107, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23150644

ABSTRACT

In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.


Subject(s)
Enzyme Inhibitors/metabolism , Nicotiana/metabolism , Peptides/metabolism , Plant Proteins/metabolism , Pollen Tube/metabolism , Self-Incompatibility in Flowering Plants , Amino Acid Sequence , Enzyme Activation , Genes, Plant , Molecular Sequence Data , Peptides/genetics , Plant Extracts/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Pollen Tube/genetics , Pollination , Protein Interaction Mapping , Protein Stability , Protein Structure, Secondary , Proteolysis , RNA Interference , Subtilisin/antagonists & inhibitors , Nicotiana/genetics
20.
Plant Sci ; 187: 39-48, 2012 May.
Article in English | MEDLINE | ID: mdl-22404831

ABSTRACT

Phosphorus is an essential element for all living cells, but its availability is often limiting in the soil. Plants have adapted to such limitation and respond to phosphorus deficiency. The soluble inorganic pyrophosphatases (PPase; EC 3.6.1.1) recycle the pyrophosphate produced by many biosynthetic reactions, and may play a role in the plant adaptation to phosphorus deficiency. In this work, three PPase mRNAs were identified from the Phaseolus vulgaris EST international database and their sequences were corroborated and completed using 3'RACE. After design and validation of the appropriate oligonucleotide primers, the PPase mRNA expression was measured by qRT-PCR in leaves, stems, and roots of bean plants grown with 1mM phosphate or under phosphate starvation. The plant tissues were classified according to their position on the plant, and some physiological signs of stress were recorded. qRT-PCR revealed changes in mRNA expression, but not for all isozymes under analysis, and not for all tissues. In addition, changes in the activity of some PPases were observed in zymograms. Our data are consistent with an important role for pyrophosphate in the adaptation of the plant to phosphate starvation.


Subject(s)
Adaptation, Physiological , Gene Expression , Inorganic Pyrophosphatase/metabolism , Phaseolus/enzymology , Phosphates/metabolism , Phosphorus/deficiency , Stress, Physiological , Base Sequence , DNA Primers , Diphosphates/metabolism , Gene Expression Regulation, Plant , Inorganic Pyrophosphatase/genetics , Isoenzymes , Phaseolus/genetics , Phaseolus/metabolism , Phosphorus/metabolism , Plant Structures , RNA, Messenger/metabolism , Soil , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...