Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nat Cancer ; 4(11): 1544-1560, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749321

ABSTRACT

Cachexia is a major cause of morbidity and mortality in individuals with cancer and is characterized by weight loss due to adipose and muscle tissue wasting. Hallmarks of white adipose tissue (WAT) remodeling, which often precedes weight loss, are impaired lipid storage, inflammation and eventually fibrosis. Tissue wasting occurs in response to tumor-secreted factors. Considering that the continuous endothelium in WAT is the first line of contact with circulating factors, we postulated whether the endothelium itself may orchestrate tissue remodeling. Here, we show using human and mouse cancer models that during precachexia, tumors overactivate Notch1 signaling in distant WAT endothelium. Sustained endothelial Notch1 signaling induces a WAT wasting phenotype in male mice through excessive retinoic acid production. Pharmacological blockade of retinoic acid signaling was sufficient to inhibit WAT wasting in a mouse cancer cachexia model. This demonstrates that cancer manipulates the endothelium at distant sites to mediate WAT wasting by altering angiocrine signals.


Subject(s)
Adipose Tissue, White , Cachexia , Neoplasms , Receptor, Notch1 , Animals , Humans , Male , Mice , Adipose Tissue, White/pathology , Cachexia/pathology , Neoplasms/complications , Signal Transduction , Tretinoin , Receptor, Notch1/metabolism
2.
Liver Int ; 43(8): 1822-1836, 2023 08.
Article in English | MEDLINE | ID: mdl-37312667

ABSTRACT

BACKGROUND & AIMS: Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS: Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS: Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS: We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.


Subject(s)
Fibroblasts , Liver , Humans , Mice , Animals , Fibroblasts/pathology , Liver/pathology , Liver Cirrhosis/pathology , Mitochondria/pathology , Transcription Factors/genetics
3.
Nat Commun ; 14(1): 2353, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095087

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Peritoneal Neoplasms , Mice , Animals , Peritoneum/metabolism , Peritoneal Neoplasms/pathology , Hyaluronic Acid , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Neoplasm Metastasis/pathology , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Pancreatic Neoplasms
4.
Hepatology ; 78(4): 1092-1105, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37055018

ABSTRACT

BACKGROUND AND AIMS: Chronic liver disease is a growing epidemic, leading to fibrosis and cirrhosis. TGF-ß is the pivotal profibrogenic cytokine that activates HSC, yet other molecules can modulate TGF-ß signaling during liver fibrosis. Expression of the axon guidance molecules semaphorins (SEMAs), which signal through plexins and neuropilins (NRPs), have been associated with liver fibrosis in HBV-induced chronic hepatitis. This study aims at determining their function in the regulation of HSCs. APPROACH AND RESULTS: We analyzed publicly available patient databases and liver biopsies. We used transgenic mice, in which genes are deleted only in activated HSCs to perform ex vivo analysis and animal models. SEMA3C is the most enriched member of the semaphorin family in liver samples from patients with cirrhosis. Higher expression of SEMA3C in patients with NASH, alcoholic hepatitis, or HBV-induced hepatitis discriminates those with a more profibrotic transcriptomic profile. SEMA3C expression is also elevated in different mouse models of liver fibrosis and in isolated HSCs on activation. In keeping with this, deletion of SEMA3C in activated HSCs reduces myofibroblast marker expression. Conversely, SEMA3C overexpression exacerbates TGF-ß-mediated myofibroblast activation, as shown by increased SMAD2 phosphorylation and target gene expression. Among SEMA3C receptors, only NRP2 expression is maintained on activation of isolated HSCs. Interestingly, lack of NRP2 in those cells reduces myofibroblast marker expression. Finally, deletion of either SEMA3C or NRP2, specifically in activated HSCs, reduces liver fibrosis in mice. CONCLUSION: SEMA3C is a novel marker for activated HSCs that plays a fundamental role in the acquisition of the myofibroblastic phenotype and liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Semaphorins , Animals , Humans , Mice , Hepatic Stellate Cells/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Phosphorylation , Semaphorins/genetics , Semaphorins/metabolism , Transforming Growth Factor beta/metabolism
5.
Cancer Res ; 82(23): 4414-4428, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36200806

ABSTRACT

Epithelial ovarian cancer (EOC) is one of the most lethal gynecologic cancers worldwide. EOC cells educate tumor-associated macrophages (TAM) through CD44-mediated cholesterol depletion to generate an immunosuppressive tumor microenvironment (TME). In addition, tumor cells frequently activate Notch1 receptors on endothelial cells (EC) to facilitate metastasis. However, further work is required to establish whether the endothelium also influences the education of recruited monocytes. Here, we report that canonical Notch signaling through RBPJ in ECs is an important player in the education of TAMs and EOC progression. Deletion of Rbpj in the endothelium of adult mice reduced infiltration of monocyte-derived macrophages into the TME of EOC and prevented the acquisition of a typical TAM gene signature; this was associated with stronger cytotoxic activity of T cells and decreased tumor burden. Mechanistically, CXCL2 was identified as a novel Notch/RBPJ target gene that regulated the expression of CD44 on monocytes and subsequent cholesterol depletion of TAMs. Bioinformatic analysis of ovarian cancer patient data showed that increased CXCL2 expression is accompanied by higher expression of CD44 and TAM education. Together, these findings indicate that EOC cells induce the tumor endothelium to secrete CXCL2 to establish an immunosuppressive microenvironment. SIGNIFICANCE: Endothelial Notch signaling favors immunosuppression by increasing CXCL2 secretion to stimulate CD44 expression in macrophages, facilitating their education by tumor cells.


Subject(s)
Ovarian Neoplasms , Tumor-Associated Macrophages , Humans , Female , Mice , Animals , Endothelial Cells/pathology , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/pathology , Tumor Microenvironment , Endothelium/metabolism , Cholesterol , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
6.
Mol Metab ; 60: 101487, 2022 06.
Article in English | MEDLINE | ID: mdl-35378329

ABSTRACT

OBJECTIVE: Fibrotic organ responses have recently been identified as long-term complications in diabetes. Indeed, insulin resistance and aberrant hepatic lipid accumulation represent driving features of progressive non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis and non-alcoholic steatohepatitis (NASH) to fibrosis. Effective pharmacological regimens to stop progressive liver disease are still lacking to-date. METHODS: Based on our previous discovery of transforming growth factor beta-like stimulated clone (TSC)22D4 as a key driver of insulin resistance and glucose intolerance in obesity and type 2 diabetes, we generated a TSC22D4-hepatocyte specific knockout line (TSC22D4-HepaKO) and exposed mice to control or NASH diet models. Mechanistic insights were generated by metabolic phenotyping and single-nuclei RNA sequencing. RESULTS: Hepatic TSC22D4 expression was significantly correlated with markers of liver disease progression and fibrosis in both murine and human livers. Indeed, hepatic TSC22D4 levels were elevated in human NASH patients as well as in several murine NASH models. Specific genetic deletion of TSC22D4 in hepatocytes led to reduced liver lipid accumulation, improvements in steatosis and inflammation scores and decreased apoptosis in mice fed a lipogenic MCD diet. Single-nuclei RNA sequencing revealed a distinct TSC22D4-dependent gene signature identifying an upregulation of mitochondrial-related processes in hepatocytes upon loss of TSC22D4. An enrichment of genes involved in the TCA cycle, mitochondrial organization, and triglyceride metabolism underscored the hepatocyte-protective phenotype and overall decreased liver damage as seen in mouse models of hepatocyte-selective TSC22D4 loss-of-function. CONCLUSIONS: Together, our data uncover a new connection between targeted depletion of TSC22D4 and intrinsic metabolic processes in progressive liver disease. Hepatocyte-specific reduction of TSC22D4 improves hepatic steatosis and promotes hepatocyte survival via mitochondrial-related mechanisms thus paving the way for targeted therapies.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Diabetes Mellitus, Type 2/metabolism , Fibrosis , Hepatocytes/metabolism , Humans , Lipids , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Transcription Factors/metabolism
7.
Commun Biol ; 4(1): 1192, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654883

ABSTRACT

DHX15 is a downstream substrate for Akt1, which is involved in key cellular processes affecting vascular biology. Here, we explored the vascular regulatory function of DHX15. Homozygous DHX15 gene deficiency was lethal in mouse and zebrafish embryos. DHX15-/- zebrafish also showed downregulation of VEGF-C and reduced formation of lymphatic structures during development. DHX15+/- mice depicted lower vascular density and impaired lymphatic function postnatally. RNAseq and proteome analysis of DHX15 silenced endothelial cells revealed differential expression of genes involved in the metabolism of ATP biosynthesis. The validation of these results demonstrated a lower activity of the Complex I in the mitochondrial membrane of endothelial cells, resulting in lower intracellular ATP production and lower oxygen consumption. After injection of syngeneic LLC1 tumor cells, DHX15+/- mice showed partially inhibited primary tumor growth and reduced lung metastasis. Our results revealed an important role of DHX15 in vascular physiology and pave a new way to explore its potential use as a therapeutical target for metastasis treatment.


Subject(s)
Energy Metabolism , Lymphatic System/pathology , Neoplasm Metastasis , RNA Helicases/deficiency , Animals , Embryo, Mammalian/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Endothelium/metabolism , Mice , Mice, Transgenic/embryology , Neoplasms , Zebrafish/embryology
8.
Bio Protoc ; 11(3): e3907, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33732794

ABSTRACT

Vascular smooth muscle cells (VSMCs) have been cultured for decades to study the role of these cells in cardiovascular disorders. The most common source of VSMCs is the rat aorta. Here we show the adaptation of this method to isolate and culture mouse aortic VSMCs. The advantage of this method is that there are many more transgenic mouse lines available compared to rats. The protocol consists of the isolation of the aorta, the liberation of vascular cells by the action of collagenase, culturing of VSCMs, and analyzing filamentous actin and alpha smooth muscle actin by fluorescence microscopy. VSCMs can be further used to study mechanisms underlying cardiovascular diseases. Graphic abstract: Figure 1.Working steps.

9.
Mol Cancer Res ; 19(2): 288-300, 2021 02.
Article in English | MEDLINE | ID: mdl-33139505

ABSTRACT

Oil is frequently used as a solvent to inject lipophilic substances into the peritoneum of laboratory animals. Although mineral oil causes chronic peritoneal inflammation, little is known whether other oils are better suited. We show that olive, peanut, corn, or mineral oil causes xanthogranulomatous inflammation with depletion of resident peritoneal macrophages. However, there were striking differences in the severity of the inflammatory response. Peanut and mineral oil caused severe chronic inflammation with persistent neutrophil and monocyte recruitment, expansion of the vasculature, and fibrosis. Corn and olive oil provoked no or only mild signs of chronic inflammation. Mechanistically, the vegetal oils were taken up by macrophages leading to foam cell formation and induction of cell death. Olive oil triggered caspase-3 cleavage and apoptosis, which facilitate the resolution of inflammation. Peanut oil and, to a lesser degree, corn oil, triggered caspase-1 activation and macrophage pyroptosis, which impair the resolution of inflammation. As such, intraperitoneal oil administration can interfere with the outcome of subsequent experiments. As a proof of principle, intraperitoneal peanut oil injection was compared with its oral delivery in a thioglycolate-induced peritonitis model. The chronic peritoneal inflammation due to peanut oil injection impeded the proper recruitment of macrophages and the resolution of inflammation in this peritonitis model. In summary, the data indicate that it is advisable to deliver lipophilic substances, like tamoxifen, by oral gavage instead of intraperitoneal injection. IMPLICATIONS: This work contributes to the reproducibility of animal research by helping to understand some of the undesired effects observed in animal experiments.


Subject(s)
Corn Oil/adverse effects , Inflammation/chemically induced , Injections, Intraperitoneal/adverse effects , Macrophages, Peritoneal/metabolism , Animals , Female , Humans , Mice , Models, Animal
10.
Sci Rep ; 9(1): 18224, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796853

ABSTRACT

Vascular smooth muscle cell (VSMC) dysfunction is a hallmark of small vessel disease, a common cause of stroke and dementia. Two of the most frequently mutated genes in familial small vessel disease are HTRA1 and NOTCH3. The protease HTRA1 cleaves the NOTCH3 ligand JAG1 implying a mechanistic link between HTRA1 and Notch signaling. Here we report that HTRA1 is essential for VSMC differentiation into the contractile phenotype. Mechanistically, loss of HTRA1 increased JAG1 protein levels and NOTCH3 signaling activity in VSMC. In addition, the loss of HTRA1 enhanced TGFß-SMAD2/3 signaling activity. Activation of either NOTCH3 or TGFß signaling resulted in increased transcription of the HES and HEY transcriptional repressors and promoted the contractile VSMC phenotype. However, their combined over-activation led to an additive accumulation of HES and HEY proteins, which repressed the expression of contractile VSMC marker genes. As a result, VSMC adopted an immature phenotype with impaired arterial vasoconstriction in Htra1-deficient mice. These data demonstrate an essential role of HTRA1 in vascular maturation and homeostasis by controlling Notch and TGFß signaling.


Subject(s)
High-Temperature Requirement A Serine Peptidase 1/metabolism , Muscle, Smooth, Vascular/growth & development , Animals , Blotting, Western , Fluorescent Antibody Technique , High-Temperature Requirement A Serine Peptidase 1/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Real-Time Polymerase Chain Reaction , Receptor, Notch3/metabolism , Receptor, Notch3/physiology , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/physiology
11.
PLoS One ; 14(6): e0218716, 2019.
Article in English | MEDLINE | ID: mdl-31233564

ABSTRACT

BACKGROUND AND AIMS: The occurrence of endothelial alterations in the liver and in the splanchnic vasculature of cirrhotic patients and experimental models of liver diseases has been demonstrated. However, the pathological role of the portal vein endothelium in this clinical context is scarcely studied and, therefore, deserves attention. In this context, we aimed to investigate whether pathological endothelial activation occurs in the portal vein of cirrhotic rats. METHODS: Cirrhosis was induced in wistar rats by CCl4 inhalation. We generated immortalized endothelial cells from the portal vein of control (CT-iPVEC) and cirrhotic rats (CH-iPVEC) by retroviral transduction of the SV40 T antigen. We assessed differential gene expression and intracellular reactive oxygen species (ROS) levels in iPVECs and in portal veins of control and cirrhotic rats. Finally, we assessed the therapeutic effectiveness of cerium oxide nanoparticles (CeO2NP) on reversing PVEC activation and macrophage polarization. RESULTS: CH-iPVECs overexpressed collagen-I, endothelin-1, TIMP-1, TIMP-2, IL-6 and PlGF genes. These results were consistent with the differential expression showed by whole portal veins from cirrhotic rats. In addition, CH-iPVECs showed a significant increase in intracellular ROS and the capacity of potentiating M1 polarization in macrophages. The treatment of CH-iPVECs with CeO2NPs blocked intracellular ROS formation and IL-6 and TIMP-2 gene overexpression. In agreement with the in vitro results, the chronic treatment of cirrhotic rats with CeO2NPs also resulted in the blockade of both ROS formation and IL-6 gene overexpression in whole portal veins. CONCLUSIONS: Endothelial cells from portal vein of cirrhotic rats depicted an abnormal phenotype characterized by a differential gene expression and the induction of M1 polarization in macrophages. We identified the excess of intracellular reactive oxygen species (ROS) as a major contributor to this altered phenotype. In addition, we demonstrated the utility of the nanomaterial cerium oxide as an effective antioxidant capable of reverse some of these pathological features associated with the portal vein in the cirrhosis condition.


Subject(s)
Cerium/administration & dosage , Liver Cirrhosis, Experimental/therapy , Metal Nanoparticles/administration & dosage , Animals , Antioxidants/administration & dosage , Down-Regulation , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Inflammation/metabolism , Inflammation/pathology , Inflammation/therapy , Interleukin-6/genetics , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Oxidative Stress/drug effects , Portal Vein/drug effects , Portal Vein/metabolism , Portal Vein/pathology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Transcriptome
12.
Cell Metab ; 29(6): 1376-1389.e4, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30930171

ABSTRACT

Macrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4-mediated reprogramming, including inhibition of IFNγ-induced gene expression. Genetic deletion of ABC transporters, which mediate cholesterol efflux, reverts the tumor-promoting functions of TAMs and reduces tumor progression. These studies reveal an unexpected role for membrane-cholesterol efflux in driving TAM-mediated tumor progression while pointing to a potentially novel anti-tumor therapeutic strategy.


Subject(s)
Cell Membrane/metabolism , Cellular Reprogramming/physiology , Cholesterol/metabolism , Macrophages/physiology , Neoplasms/pathology , Tumor Microenvironment , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Biological Transport/physiology , Bone Marrow Cells/pathology , Bone Marrow Cells/physiology , Cells, Cultured , Disease Progression , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/immunology , Neoplasms/metabolism , Tumor Escape/physiology , Tumor Microenvironment/physiology
13.
Elife ; 72018 04 05.
Article in English | MEDLINE | ID: mdl-29620522

ABSTRACT

Angiogenesis is coordinated by VEGF and Notch signaling. DLL4-induced Notch signaling inhibits tip cell formation and vessel branching. To ensure proper Notch signaling, receptors and ligands are clustered at adherens junctions. However, little is known about factors that control Notch activity by influencing the cellular localization of Notch ligands. Here, we show that the multiple PDZ domain protein (MPDZ) enhances Notch signaling activity. MPDZ physically interacts with the intracellular carboxyterminus of DLL1 and DLL4 and enables their interaction with the adherens junction protein Nectin-2. Inactivation of the MPDZ gene leads to impaired Notch signaling activity and increased blood vessel sprouting in cellular models and the embryonic mouse hindbrain. Tumor angiogenesis was enhanced upon endothelial-specific inactivation of MPDZ leading to an excessively branched and poorly functional vessel network resulting in tumor hypoxia. As such, we identified MPDZ as a novel modulator of Notch signaling by controlling ligand recruitment to adherens junctions.


Subject(s)
Carcinoma, Lewis Lung/blood supply , Carrier Proteins/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Melanoma, Experimental/blood supply , Membrane Proteins/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic , Receptors, Notch/metabolism , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Receptors, Notch/genetics , Signal Transduction
14.
Oncoscience ; 4(5-6): 45-46, 2017 May.
Article in English | MEDLINE | ID: mdl-28781986
15.
Mol Cell Oncol ; 4(3): e1311828, 2017.
Article in English | MEDLINE | ID: mdl-28616587

ABSTRACT

Blood vessels supply tumor cells with oxygen and nutrients and provide the basis for metastatic dissemination. In addition, endothelial cells can provide factors that orchestrate the behavior of tumor cells. Here, we expand upon our previous findings that link activation of Notch signaling in the endothelium to cellular senescence, weakening of cell junctions, and expression of adhesion molecules, which facilitates tumor and immune cell migration across the vessel wall and homing at distant sites.

17.
Cancer Cell ; 31(3): 355-367, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28238683

ABSTRACT

Endothelial cells (ECs) provide angiocrine factors orchestrating tumor progression. Here, we show that activated Notch1 receptors (N1ICD) are frequently observed in ECs of human carcinomas and melanoma, and in ECs of the pre-metastatic niche in mice. EC N1ICD expression in melanoma correlated with shorter progression-free survival. Sustained N1ICD activity induced EC senescence, expression of chemokines and the adhesion molecule VCAM1. This promoted neutrophil infiltration, tumor cell (TC) adhesion to the endothelium, intravasation, lung colonization, and postsurgical metastasis. Thus, sustained vascular Notch signaling facilitates metastasis by generating a senescent, pro-inflammatory endothelium. Consequently, treatment with Notch1 or VCAM1-blocking antibodies prevented Notch-driven metastasis, and genetic ablation of EC Notch signaling inhibited peritoneal neutrophil infiltration in an ovarian carcinoma mouse model.


Subject(s)
Receptor, Notch1/physiology , Animals , Cell Movement , Cells, Cultured , Humans , Lung Neoplasms/secondary , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness , Neoplasm Metastasis , Neutrophil Infiltration , Signal Transduction/physiology , Vascular Cell Adhesion Molecule-1/analysis , Vascular Cell Adhesion Molecule-1/physiology
18.
Liver Int ; 35(4): 1383-92, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24612347

ABSTRACT

BACKGROUND & AIMS: Studies in experimental models of cirrhosis showed that anti-angiogenic treatments may be effective for the treatment of liver fibrosis. In this context, angiopoietins are potential therapeutic targets as they are involved in the maintenance and stabilization of newly formed blood vessels. In addition, angiopoietin-2 is expressed in fibrotic livers and its inhibition in tumours results in vessel stability. Therefore, our study was aimed to assess the therapeutic utility of inhibiting angiopoietin-2. METHODS: Circulating levels of angiopoietin-1 and angiopoietin-2 were quantified by ELISA in CCl4 -treated rats and in patients with cirrhosis. In vivo blockade of angiopoietin-2 in rats with liver fibrosis was performed with a chemically programmed antibody, CVX-060. RESULTS: High levels of angiopoietin-2 were found in the systemic and suprahepatic circulation of cirrhotic patients and the ratio angiopoietin-1/angiopoietin-2 inversely correlated with prognostic models for alcoholic liver disease. Chronic treatment of CCl4 -treated rats with CVX-060 was associated with a significant decrease in inflammatory infiltrate, normalization of the hepatic microvasculature and reduction in VCAM-1 vascular expression. The anti-angiopoietin-2 treatment was also associated with less liver fibrosis and with lower levels of circulating transaminases. CVX-060 treatment was not associated with either vascular pruning in healthy tissue or compensatory overexpression of VEGF. CONCLUSIONS: Inhibition of angiopoietin-2 is an effective and safe treatment for liver fibrosis in CCl4 -treated rats, acting mainly through the induction of vessel normalization and the attenuation of hepatic inflammatory infiltrate. Therefore, inhibition of angiopoietin-2 offers a therapeutic alternative for liver fibrosis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Angiopoietin-2/antagonists & inhibitors , Hepatitis, Alcoholic/blood , Immunoconjugates/pharmacology , Liver Cirrhosis, Alcoholic/blood , Liver Cirrhosis, Experimental/prevention & control , Liver/drug effects , Neovascularization, Physiologic/drug effects , Adult , Angiopoietin-2/blood , Angiopoietin-2/metabolism , Animals , Biomarkers/blood , Case-Control Studies , Female , Humans , Inflammation Mediators/metabolism , Liver/blood supply , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Male , Middle Aged , Rats, Wistar , Receptor, TIE-2/antagonists & inhibitors , Receptor, TIE-2/metabolism , Signal Transduction/drug effects , Up-Regulation , Vascular Cell Adhesion Molecule-1/metabolism
19.
Proc Natl Acad Sci U S A ; 111(35): 12865-70, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136137

ABSTRACT

The PI3K/Akt pathway is necessary for several key endothelial cell (EC) functions, including cell growth, migration, survival, and vascular tone. However, existing literature supports the idea that Akt can be either pro- or antiangiogenic, possibly due to compensation by multiple isoforms in the EC when a single isoform is deleted. Thus, biochemical, genetic, and proteomic studies were conducted to examine isoform-substrate specificity for Akt1 vs. Akt2. In vitro, Akt1 preferentially phosphorylates endothelial nitric oxide synthase (eNOS) and promotes NO release, whereas nonphysiological overexpression of Akt2 can bypass the loss of Akt1. Conditional deletion of Akt1 in the EC, in the absence or presence of Akt2, retards retinal angiogenesis, implying that Akt1 exerts a nonredundant function during physiological angiogenesis. Finally, proteomic analysis of Akt substrates isolated from Akt1- or Akt2-deficient ECs documents that phosphorylation of multiple Akt substrates regulating angiogenic signaling is reduced in Akt1-deficient, but not Akt2-deficient, ECs, including eNOS and Forkhead box proteins. Therefore, Akt1 promotes angiogenesis largely due to phosphorylation and regulation of important downstream effectors that promote aspects of angiogenic signaling.


Subject(s)
Endothelium, Vascular/metabolism , Neovascularization, Physiologic/physiology , Proto-Oncogene Proteins c-akt/metabolism , Retinal Vessels/metabolism , Animals , Cell Line, Transformed , Lung/blood supply , Lung/cytology , Mice , Mice, Knockout , Nitric Oxide Synthase Type III/metabolism , Nitrogen Mustard Compounds/metabolism , Phosphorylation/physiology , Proteomics , Proto-Oncogene Proteins c-akt/genetics , Retina/pathology , Retinal Vessels/pathology , Signal Transduction/physiology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...