Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pregnancy Childbirth ; 15: 96, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25885354

ABSTRACT

BACKGROUND: Sulfate is important for fetal growth and development. During pregnancy, the fetus relies on sulfate from the maternal circulation. We report reference intervals for maternal plasma sulfate levels and fractional excretion index (FEI) for sulfate in pregnancy, as well as sulfate levels in cord blood from term pregnancies. METHODS: Plasma and urine were collected from 103 pregnant women of 10-20 weeks gestation and 106 pregnant women of 30-37 weeks gestation. Venous cord plasma was collected from 80 healthy term babies. Sulfate levels were measured by ion chromatography. Plasma and urinary creatinine levels were used to calculate FEI sulfate in pregnant women. Analyses provide reference intervals, and explored the relationship between maternal sulfate data with several prenatal factors. RESULTS: Median maternal plasma sulfate levels were 452 µmol/L and 502 µmol/L at 10-20 and 30-37 weeks gestation, respectively, and inversely correlated with FEI sulfate median values of 0.15 and 0.11. Overall reference intervals were 305-710 and 335-701 µmol/L (2.5th; 97.5th percentile; for 10-20 and 30-37 weeks gestation, respectively) for maternal plasma sulfate, and 0.06-0.31 and 0.05-0.28 for maternal FEI sulfate. Term venous cord plasma sulfate median levels were significantly (p = 0.038) higher in female babies (375 µmol/L) when compared to male babies (342 µmol/L), with an overall reference interval of 175-603 µmol/L. CONCLUSIONS: We provide the first reference intervals for maternal plasma sulfate levels and FEI sulfate, as well as cord plasma sulfate levels. These findings provide reference data for further studies of sulfate levels in both mother and child.


Subject(s)
Fetal Blood/chemistry , Pregnancy/blood , Sulfates/blood , Adult , Chromatography, Ion Exchange , Cohort Studies , Female , Gestational Age , Humans , Infant, Newborn , Male , Pregnancy/metabolism , Pregnancy Trimester, First , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Reference Values , Sex Factors , Sulfates/urine , Young Adult
2.
J Immunol ; 192(4): 1982-9, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24453245

ABSTRACT

We established a humanized mouse model incorporating FLT3-ligand (FLT3-L) administration after hematopoietic cell reconstitution to investigate expansion, phenotype, and function of human dendritic cells (DC). FLT3-L increased numbers of human CD141(+) DC, CD1c(+) DC, and, to a lesser extent, plasmacytoid DC (pDC) in the blood, spleen, and bone marrow of humanized mice. CD1c(+) DC and CD141(+) DC subsets were expanded to a similar degree in blood and spleen, with a bias toward expansion of the CD1c(+) DC subset in the bone marrow. Importantly, the human DC subsets generated after FLT3-L treatment of humanized mice are phenotypically and functionally similar to their human blood counterparts. CD141(+) DC in humanized mice express C-type lectin-like receptor 9A, XCR1, CADM1, and TLR3 but lack TLR4 and TLR9. They are major producers of IFN-λ in response to polyinosinic-polycytidylic acid but are similar to CD1c(+) DC in their capacity to produce IL-12p70. Although all DC subsets in humanized mice are efficient at presenting peptide to CD8(+) T cells, CD141(+) DC are superior in their capacity to cross-present protein Ag to CD8(+) T cells following activation with polyinosinic-polycytidylic acid. CD141(+) DC can be targeted in vivo following injection of Abs against human DEC-205 or C-type lectin-like receptor 9A. This model provides a feasible and practical approach to dissect the function of human CD141(+) and CD1c(+) DC and evaluate adjuvants and DC-targeting strategies in vivo.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens, CD1/metabolism , Antigens, Surface/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Glycoproteins/metabolism , Membrane Proteins/pharmacology , Adjuvants, Immunologic/administration & dosage , Animals , Antigen Presentation/immunology , Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Adhesion Molecule-1 , Cell Adhesion Molecules/metabolism , Female , Humans , Immunoglobulins/metabolism , Interferon-gamma/metabolism , Interleukin-12/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Lymphocyte Activation/immunology , Membrane Proteins/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Minor Histocompatibility Antigens , Poly I-C/immunology , Receptors, Cell Surface/immunology , Receptors, Chemokine/metabolism , Thrombomodulin , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 9/metabolism
3.
Exp Hematol ; 36(11): 1496-506, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18715688

ABSTRACT

OBJECTIVE: Human allogeneic (allo)-T-cell responses within recipient lymphoid tissues and the degree to which they are altered in the presence of activated tissue-resident dendritic cells (DC) remain unknown. This study examined allo-T-cell recruitment and the early allo-T-cell responses that occur in the bone marrow (BM) and spleen (SP) of humanized (hu) nonobese diabetic (NOD)/severe combined immunodeficient (SCID) recipients containing activated human tissue-resident myeloid DC (MDC). MATERIALS AND METHODS: Human naïve allo-T cells were transferred into polyinosinic:polycytidylic acid [poly(I:C)]-treated or untreated huNOD/SCID recipients containing human tissue-resident DC derived from transplanted CD34(+) cells. Activation of human tissue-resident MDC mediated by poly(I:C) treatment, recruitment, proliferation, and effector differentiation of allo-T cells in the BM and SP of huNOD/SCID recipients were analyzed in vivo by flow cytometry. RESULTS: Poly(I:C) treatment induced transient activation of human MDC within a maximum of 8 hours, as evidenced in the BM by an increased proportion of MDC-expressing CD86 while in the SP by MDC expressing CD86 and producing interleukin-12. Poly(I:C)-pretreated huNOD/SCID recipients showed changes in the recruitment of allo-T cells in the BM and SP and developed different allo-T cell responses within the BM and SP compartments. In the BM, allo-T cells underwent multiple divisions and increased numbers of interferon-gamma(+) and tumor necrosis factor-alpha(+) effector cells, while the majority of splenic allo-T cells underwent a single division and had fewer effector allo-T cells. CONCLUSIONS: Our experimental transplantation model demonstrates that early allo-T-cell responses are regulated by compartmentalization in the BM and secondary lymphoid tissues; events potentially occurring after allotransplantation in human recipients.


Subject(s)
Bone Marrow/immunology , Dendritic Cells/immunology , Hematopoietic Stem Cell Transplantation , Spleen/immunology , T-Lymphocytes/immunology , Animals , Cytokines/biosynthesis , Humans , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, SCID , Poly I-C/pharmacology
4.
Blood ; 101(6): 2314-7, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12406901

ABSTRACT

Changes in blood dendritic cell (BDC) counts (CD123(hi)BDC and CD11c(+)BDC) and expression of CD62L, CCR7, and CD49d were analyzed in healthy donors, multiple myeloma (MM), and non-Hodgkin lymphoma (NHL) patients, who received granulocyte-colony stimulating factor (G-CSF) containing peripheral blood stem cell (PBSC) mobilization protocols. Low-dose G-CSF in healthy donors (8-10 microg/kg/d subcutaneously) and high-dose G-CSF in patients (30 microg/kg/d) increased CD123(hi)BDC (2- to 22-fold, mean 3.7 x 10(6)/L-17.7 x 10(6)/L and 1.9 x 10(6)/L-12.0 x 10(6)/L) in healthy donors and MM but decreased CD11c(+)BDC (2- to 10-fold, mean 5.7 x 10(6)/L-1.6 x 10(6)/L) in NHL patients, on the day of apheresis, compared with steady state. After apheresis, CD123(hi)BDC counts remained high, whereas low CD11c(+)BDC counts tended to recover in the following 2-5 days. Down-regulation of CD62L and up-regulation of CCR7 on CD123(hi)BDC were found in most healthy donors and MM patients. CD49d expression was unchanged. Thus, PBSC mobilization may change BDC counts by altering molecules necessary for BDC homing from blood into tissues.


Subject(s)
Dendritic Cells/cytology , Dendritic Cells/immunology , Granulocyte Colony-Stimulating Factor/pharmacology , L-Selectin/analysis , Receptors, Chemokine/analysis , Receptors, Interleukin-3/analysis , Adult , Aged , Blood Component Removal , CD11c Antigen/analysis , Cell Count , Cyclophosphamide/administration & dosage , Female , Granulocyte Colony-Stimulating Factor/administration & dosage , Hematopoietic Stem Cell Mobilization , Humans , Interleukin-3 Receptor alpha Subunit , Lymphoma, Non-Hodgkin/blood , Lymphoma, Non-Hodgkin/immunology , Male , Middle Aged , Multiple Myeloma/blood , Multiple Myeloma/immunology , Receptors, CCR7 , Tissue and Organ Harvesting
5.
J Immunol Methods ; 267(2): 199-212, 2002 Sep 15.
Article in English | MEDLINE | ID: mdl-12165441

ABSTRACT

The fundamental role of dendritic cells (DC) in initiating and directing the primary immune response is well established. Furthermore, it is now accepted that DC may be useful in new vaccination strategies for preventing certain malignant and infectious diseases. As blood DC (BDC) physiology differs from that of the DC homologues generated in vitro from monocyte precursors, it is becoming more relevant to consider BDC for therapeutic interventions. Until recently, protocols for the isolation of BDC were laborious and inefficient; therefore, their use for investigative cancer immunotherapy is not widespread. In this study, we carefully documented BDC counts, yields and subsets during apheresis (Cobe Spectra), the initial and essential procedure in creating a BDC isolation platform for cancer immunotherapy. We established that an automated software package (Version 6.0 AutoPBPC) provides an operator-independent reliable source of mononuclear cells (MNC) for BDC preparation. Further, we observed that BDC might be recovered in high yields, often greater than 100% relative to the number of circulating BDC predicted by blood volume. An average of 66 million (range, 17-179) BDC per 10-l procedure were obtained, largely satisfying the needs for immunization. Higher yields were possible on total processed blood volumes of 15 l. BDC were not activated by the isolation procedure and, more importantly, both BDC subsets (CD11c(+)CD123(low) and CD11c(-)CD123(high)) were equally represented. Finally, we established that the apheresis product could be used for antibody-based BDC immunoselection and demonstrated that fully functional BDC can be obtained by this procedure.


Subject(s)
Cell Separation/methods , Dendritic Cells/cytology , Dendritic Cells/immunology , Immunotherapy/methods , Neoplasms/therapy , Adult , Blood Component Removal , Female , Flow Cytometry , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Lymphocyte Culture Test, Mixed , Male , Middle Aged , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...