Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 154(18): 184508, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34241011

ABSTRACT

The time scales of structural relaxation are investigated on the basis of five different response functions for 1,2, 6-hexanetriol, a hydrogen-bonded liquid with a minor secondary contribution, and 2,6,10,15,19,23-hexamethyl-tetracosane (squalane), a van der Waals-bonded liquid with a prominent secondary relaxation process. Time scales of structural relaxation are derived as inverse peak frequencies for each investigated response function. For 1,2,6-hexanetriol, the ratios of the time scales are temperature-independent, while a decoupling of time scales is observed for squalane in accordance with the literature. An alternative evaluation approach is made on the squalane data, extracting time scales from the terminal relaxation mode instead of the peak position, and in this case, temperature-independent time-scale ratios are also found for squalane, despite its strong secondary relaxation contribution. Interestingly, the very same ordering of response-function-specific time scales is observed for these two liquids, which is also consistent with the observation made for simple van der Waals-bonded liquids reported previously [Jakobsen et al., J. Chem. Phys. 136, 081102 (2012)]. This time-scale ordering is based on the following response functions, from fast to slow dynamics: shear modulus, bulk modulus, dielectric permittivity, longitudinal thermal expansivity coefficient, and longitudinal specific heat. These findings indicate a general relation between the time scales of different response functions and, as inter-molecular interactions apparently play a subordinate role, suggest a rather generic nature of the process of structural relaxation.

2.
J Chem Phys ; 150(4): 044501, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30709266

ABSTRACT

Physical aging of glycerol following temperature jumps is studied by dielectric spectroscopy at temperatures just below the glass transition temperature. The data are analyzed using two single-parameter aging tests developed by Hecksher et al. [J. Chem. Phys. 142, 241103 (2015)]. We generalize these tests to include jumps ending at different temperatures. Moreover, four times larger jumps than previously are studied. The single-parameter aging tests are here for the first time applied to a hydrogen-bonded liquid. We conclude that glycerol obeys single-parameter aging to a good approximation.

3.
J Chem Phys ; 143(22): 221101, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26671349

ABSTRACT

The frequency dependent specific heat has been measured under pressure for the molecular glass forming liquid 5-polyphenyl-4-ether in the viscous regime close to the glass transition. The temperature and pressure dependences of the characteristic time scale associated with the specific heat is compared to the equivalent time scale from dielectric spectroscopy performed under identical conditions. It is shown that the ratio between the two time scales is independent of both temperature and pressure. This observation is non-trivial and demonstrates the existence of specially simple molecular liquids in which different physical relaxation processes are both as function of temperature and pressure/density governed by the same underlying "inner clock." Furthermore, the results are discussed in terms of the recent conjecture that van der Waals liquids, like the measured liquid, comply to the isomorph theory.

4.
J Chem Phys ; 139(10): 101101, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-24050319

ABSTRACT

A liquid obeys isochronal superposition if its dynamics is invariant along the isochrones in the thermodynamic phase diagram (the curves of constant relaxation time). This paper introduces two quantitative measures of isochronal superposition. The measures are used to test the following six liquids for isochronal superposition: 1,2,6 hexanetriol, glycerol, polyphenyl ether, diethyl phthalate, tetramethyl tetraphenyl trisiloxane, and dibutyl phthalate. The latter four van der Waals liquids obey isochronal superposition to a higher degree than the two hydrogen-bonded liquids. This is a prediction of the isomorph theory, and it confirms findings by other groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...