Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 269(45): 27914-9, 1994 Nov 11.
Article in English | MEDLINE | ID: mdl-7961724

ABSTRACT

Eosinophil production of superoxide (O2-.) and hydrogen peroxide (H2O2) is important in host defense. The present study assessed the potential of eosinophils to generate another potent cytotoxic species, the hydroxyl radical (.OH). .OH formation by phorbol myristate acetate (PMA)-stimulated eosinophils was demonstrated using an alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone/ethanol spin trapping system. Additionally, .OH was spin trapped following the addition of purified eosinophil peroxidase (EPO) to a cell-free O2-./H2O2 generating systems. Effects of superoxide dismutase, catalase, azide, aminotriazole, chloride-depleted buffer, and extensive metal chelation were consistent with .OH formation via the reaction of O2-. and EPO-generated hypohalous acid. Under chloride-depleted conditions, physiologic concentrations of Br- increased .OH formation by both PMA-stimulated eosinophils and the cell-free EPO system. Physiologic concentrations of SCN-, however, did not increase .OH formation, and in the presence of both Br- and SCN-, .OH formation was similar to SCN- only. Eosinophils appear to form .OH via an EPO-dependent mechanism, the magnitude of which varies with the availability of various EPO substrates. Given the highly reactive nature of this radical and the ability of EPO to adhere to cell membranes, even small amounts of .OH formed at such sites could contribute to eosinophil-mediated cytotoxicity.


Subject(s)
Eosinophils/enzymology , Hydroxyl Radical/blood , Peroxidases/blood , Bromides/pharmacology , Chlorides/pharmacology , Electron Spin Resonance Spectroscopy , Eosinophil Peroxidase , Ethanol , Humans , Kinetics , Nitrogen Oxides , Pyridines , Spin Labels , Thiocyanates/pharmacology
2.
J Clin Invest ; 90(6): 2187-96, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1469082

ABSTRACT

Pyocyanin, a secretory product of Pseudomonas aeruginosa, has the capacity to undergo redox cycling under aerobic conditions with resulting generation of superoxide and hydrogen peroxide. By using spin trapping techniques in conjunction with electron paramagnetic resonance spectrometry (EPR), superoxide was detected during the aerobic reduction of pyocyanin by NADH or porcine endothelial cells. No evidence of hydroxyl radical formation was detected. Chromium oxalate eliminated the EPR spectrum of the superoxide-derived spin adduct resulting from endothelial cell exposure to pyocyanin, suggesting superoxide formation close to the endothelial cell plasma membrane. We have previously reported that iron bound to the P. aeruginosa siderophore pyochelin (ferripyochelin) catalyzes the formation of hydroxyl free radical from superoxide and hydrogen peroxide via the Haber-Weiss reaction. In the present study, spin trap evidence of hydroxyl radical formation was detected when NADH and pyocyanin were allowed to react in the presence of ferripyochelin. Similarly, endothelial cell exposure to pyocyanin and ferripyochelin also resulted in hydroxyl radical production which appeared to occur in close proximity to the cell surface. As assessed by 51Cr release, endothelial cells which were treated with pyocyanin or ferripyochelin alone demonstrated minimal injury. However, endothelial cell exposure to the combination of pyochelin and pyocyanin resulted in 55% specific 51Cr release. Injury was not observed with the substitution of iron-free pyochelin and was diminished by the presence of catalase or dimethyl thiourea. These data suggest the possibility that the P. aeruginosa secretory products pyocyanin and pyochelin may act synergistically via the generation of hydroxyl radical to damage local tissues at sites of pseudomonas infection.


Subject(s)
Endothelium, Vascular/injuries , Hydroxides/toxicity , Phenols/administration & dosage , Pseudomonas aeruginosa/pathogenicity , Pyocyanine/administration & dosage , Reactive Oxygen Species/toxicity , Thiazoles , Animals , Cells, Cultured , Free Radicals , Hydrogen Peroxide/chemistry , In Vitro Techniques , NAD/metabolism , Pulmonary Artery/cytology , Swine
3.
Blood ; 79(3): 699-707, 1992 Feb 01.
Article in English | MEDLINE | ID: mdl-1310061

ABSTRACT

Spin trapping, a sensitive and specific means of detecting free radicals, is optimally performed on cell suspensions. This makes it unsuitable for the study of adherent endothelial cell monolayers because disrupting the monolayer to induce a cell suspension could introduce confounding factors. This problem was eliminated through the use of endothelial cells that were grown to confluence on microcarrier beads. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the nature of free radical species generated by suspensions of microcarrier bead adherent porcine pulmonary endothelial cells under various forms of oxidant stress was examined. Exposure of these endothelial cells to paraquat resulted in the spin trapping of superoxide (.O2-). Endothelial cell incubation in the presence of either bolus or continuous fluxes of hydrogen peroxide (H2O2) yielded spin trap evidence of hydroxyl radical formation, which was preventable by pretreating the cells with deferoxamine. Chromium oxalate which eliminates extracellular electron paramagnetic resonance spectrometry (EPR) signals, prevented the detection of DMPO spin adducts generated by paraquat but not H2O2-treated endothelial cells. When endothelial cells were coincubated with PMA-stimulated monocytes evidence of both .O2- and hydroxyl radical production was detected, whereas with PMA-stimulated neutrophils only .O2- production could be confirmed. Neutrophil elastase, cathepsin G, and the combination of PMA and A23187 have previously been suggested to induce endothelial cell oxy-radical generation. However, exposure of endothelial cells to each of these agents did not yield DMPO spin adducts or cyanide-insensitive endothelial cell O2 consumption. These data indicate that endothelial cell exposure: to paraquat induces extracellular .O2- formation; to H2O2 leads to intracellular hydroxyl radical production; and to elastase, cathepsin G, or A23187/PMA does not appear to cause oxy-radical generation.


Subject(s)
Endothelium, Vascular/metabolism , Oxygen/chemistry , Animals , Calcimycin/pharmacology , Calcium/physiology , Cathepsin G , Cathepsins/physiology , Cells, Cultured , Deferoxamine/chemistry , Electron Spin Resonance Spectroscopy , Free Radicals , Hydrogen Peroxide/chemistry , In Vitro Techniques , Lung/cytology , Lung/metabolism , Pancreatic Elastase/physiology , Paraquat/chemistry , Phagocytes/metabolism , Serine Endopeptidases , Swine , Tetradecanoylphorbol Acetate/pharmacology
4.
Biochim Biophys Acta ; 1075(3): 213-22, 1991 Oct 31.
Article in English | MEDLINE | ID: mdl-1659450

ABSTRACT

To enhance the sensitivity of EPR spin trapping for radicals of limited reactivity, high concentrations (10-100 mM) of spin traps are routinely used. We noted that in contrast to results with other hydroxyl radical detection systems, superoxide dismutase (SOD) often increased the amount of hydroxyl radical-derived spin adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) produced by the reaction of hypoxanthine, xanthine oxidase and iron. One possible explanation for these results is that high DMPO concentrations (approximately 100 mM) inhibit dismutation of superoxide (O2.-) to hydrogen peroxide (H2O2). Therefore, we examined the effect of DMPO on O2.- dismutation to H2O2. Lumazine +/- 100 mM DMPO was placed in a Clark oxygen electrode following which xanthine oxidase was added. The amount of H2O2 formed in this reaction was determined by introducing catalase and measuring the amount of generated via O2.- dismutation as compared to direct divalent O2 reduction. In the presence of 100 mM DMPO, H2O2 generation decreased 43%. DMPO did not scavenge H2O2 nor alter the rate of O2.- production. The effect of DMPO was concentration-dependent with inhibition of H2O2 production observed at [DMPO] greater than 10 mM. Inhibition of H2O2 production by DMPO was not observed if SOD was present or if the rate of O2.- formation increased. The spin trap 2-methyl-2-nitroso-propane (MNP, 10 mM) also inhibited H2O2 formation (81%). However, alpha-phenyl-N-tert-butylnitrone (PBN, 10 mM), 3,3,5,5 tetramethyl-1-pyrroline N-oxide (M4PO, 100 mM), alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN, 100 mM) had no effect. These data suggest that in experimental systems in which the rate of O2.- generation is low, formation of H2O2 and thus other H2O2-derived species (e.g., OH) may be inhibited by commonly used concentrations of some spin traps. Thus, under some experimental conditions spin traps may potentially prevent production of the very free radical species they are being used to detect.


Subject(s)
Cyclic N-Oxides/pharmacology , Hydrogen Peroxide/metabolism , Hydroxides , Spin Labels , Superoxides/metabolism , Catalase/pharmacology , Electron Spin Resonance Spectroscopy , Hydroxyl Radical , Superoxide Dismutase/pharmacology
5.
J Infect Dis ; 163(4): 819-24, 1991 Apr.
Article in English | MEDLINE | ID: mdl-1849162

ABSTRACT

Phagocytic cells generate superoxide (O2-) and hydrogen peroxide (H2O2), creating the substrates for hydroxyl radical (HO.) in the presence of redox active metals. Previously it was shown that HO. is not a physiologic product of human neutrophils or monocytes but can be generated in the presence of high concentrations of iron. This study was undertaken to determine whether bacterial iron could be used for the generation of HO. The growth of Staphylococcus aureus under iron-rich conditions increased bacterial iron concentration and phagocytosis of iron-rich bacteria allowed neutrophils to accumulate threefold more iron than ingestion of iron-starved organisms. Neither neutrophils nor monocytes ingesting iron-rich S. aureus generated iron-catalyzed HO. at levels detectable by spin-trapping techniques. No differences in the killing of iron-rich organisms by neutrophils was noted. The results suggest that HO. does not play a role in the killing of S. aureus by human neutrophils, regardless of their ability to deliver iron to the cell.


Subject(s)
Iron/metabolism , Monocytes/immunology , Neutrophils/immunology , Phagocytes/immunology , Staphylococcus aureus/immunology , Electron Spin Resonance Spectroscopy , Female , Free Radicals , Humans , Male , Monocytes/metabolism , Neutrophils/metabolism , Oxidation-Reduction , Phagocytes/metabolism , Staphylococcus aureus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...