Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Psychiatry ; 21(11): 1608-1612, 2016 11.
Article in English | MEDLINE | ID: mdl-26830138

ABSTRACT

The genetic basis of Alzheimer's disease (AD) is complex and heterogeneous. Over 200 highly penetrant pathogenic variants in the genes APP, PSEN1, and PSEN2 cause a subset of early-onset familial AD. On the other hand, susceptibility to late-onset forms of AD (LOAD) is indisputably associated to the ɛ4 allele in the gene APOE, and more recently to variants in more than two-dozen additional genes identified in the large-scale genome-wide association studies (GWAS) and meta-analyses reports. Taken together however, although the heritability in AD is estimated to be as high as 80%, a large proportion of the underlying genetic factors still remain to be elucidated. In this study, we performed a systematic family-based genome-wide association and meta-analysis on close to 15 million imputed variants from three large collections of AD families (~3500 subjects from 1070 families). Using a multivariate phenotype combining affection status and onset age, meta-analysis of the association results revealed three single nucleotide polymorphisms (SNPs) that achieved genome-wide significance for association with AD risk: rs7609954 in the gene PTPRG (P-value=3.98 × 10-8), rs1347297 in the gene OSBPL6 (P-value=4.53 × 10-8), and rs1513625 near PDCL3 (P-value=4.28 × 10-8). In addition, rs72953347 in OSBPL6 (P-value=6.36 × 10-7) and two SNPs in the gene CDKAL1 showed marginally significant association with LOAD (rs10456232, P-value=4.76 × 10-7; rs62400067, P-value=3.54 × 10-7). In summary, family-based GWAS meta-analysis of imputed SNPs revealed novel genomic variants in (or near) PTPRG, OSBPL6, and PDCL3 that influence risk for AD with genome-wide significance.


Subject(s)
Alzheimer Disease/genetics , Carrier Proteins/genetics , Nerve Tissue Proteins/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Receptors, Steroid/genetics , Age of Onset , Aged , Alleles , Apolipoproteins E/genetics , Carrier Proteins/metabolism , Family , Female , Genetic Association Studies/methods , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Genomics , Genotype , Humans , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Receptors, Steroid/metabolism , Risk Factors , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
2.
Transl Psychiatry ; 4: e454, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25268258

ABSTRACT

Polymorphisms in the gene encoding catenin-ß-like 1 (CTNNBL1) were recently reported to be associated with verbal episodic memory performance--in particular, delayed verbal free recall assessed between 5 and 30 min after encoding--in a genome-wide association study on healthy young adults. To further examine the genetic effects of CTNNBL1, we tested for association between 455 single-nucleotide polymorphisms (SNPs) in or near CTNNBL1 and 14 measures of episodic memory performance from three different tasks in 1743 individuals. Probands were part of a population-based study of mentally healthy adult men and women, who were between 20 and 70 years old and were recruited as participants for the Berlin Aging Study II. Associations were assessed using linear regression analysis. Despite having sufficient power to detect the previously reported effect sizes, we found no evidence for statistically significant associations between the tested CTNNBL1 SNPs and any of the 14 measures of episodic memory. The previously reported effects of genetic polymorphisms in CTNNBL1 on episodic memory performance do not generalize to the broad range of tasks assessed in our cohort. If not altogether spurious, the effects may be limited to a very narrow phenotypic domain (that is, verbal delayed free recall between 5 and 30 min). More studies are needed to further clarify the role of CTNNBL1 in human memory.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Memory, Episodic , Nuclear Proteins/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Young Adult
3.
Neurology ; 78(16): 1250-7, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22491860

ABSTRACT

OBJECTIVES: More than 30 different rare mutations, including copy number variants (CNVs), in the amyloid precursor protein gene (APP) cause early-onset familial Alzheimer disease (EOFAD), whereas the contribution of common APP variants to disease risk remains controversial. In this study we systematically assessed the role of both rare and common APP DNA variants in Alzheimer disease (AD) families. METHODS: Families with EOFAD genetically linked to the APP region were screened for missense mutations and locus duplications of APP. Further, using genome-wide DNA microarray data, we examined the APP locus for CNVs in a total of 797 additional early- and late-onset AD pedigrees. Finally, 423 single nucleotide polymorphisms (SNPs) in the APP locus, including 2 promoter polymorphisms previously associated with AD risk, were tested in up to 4,200 individuals from multiplex AD families. RESULTS: Analyses of 8 21q21-linked families revealed one family carrying a nonsynonymous mutation in exon 17 (Val717Leu) and another family with a partially penetrant 3.5-Mb locus duplication encompassing APP. CNV analysis in the APP locus revealed an additional family carrying a fully penetrant 380-kb duplication, merely spanning APP. Last, contrary to previous reports, association analyses of more than 400 different SNPs in or near APP failed to show significant effects on AD risk. CONCLUSION: Our study shows that APP mutations and locus duplications are a very rare cause of EOFAD and that the contribution of common APP variants to AD susceptibility is insignificant. Furthermore, duplications of APP may not be fully penetrant, possibly indicating the existence of hitherto unknown protective genetic factors.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Genetic Predisposition to Disease/genetics , Aged , DNA Copy Number Variations , Female , Genetic Loci/genetics , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Mutation, Missense/genetics , Pedigree , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...