Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36810379

ABSTRACT

(1) Generating a range of biological analogies is a key part of the bio-inspired design process. In this research, we drew on the creativity literature to test methods for increasing the diversity of these ideas. We considered the role of the problem type, the role of individual expertise (versus learning from others), and the effect of two interventions designed to increase creativity-going outside and exploring different evolutionary and ecological "idea spaces" using online tools. (2) We tested these ideas with problem-based brainstorming assignments from a 180-person online course in animal behavior. (3) Student brainstorming was generally drawn to mammals, and the breadth of ideas was affected more by the assigned problem than by practice over time. Individual biological expertise had a small but significant effect on the taxonomic breadth of ideas, but interactions with team members did not. When students were directed to consider other ecosystems and branches of the tree of life, they increased the taxonomic diversity of biological models. In contrast, going outside resulted in a significant decrease in the diversity of ideas. (4) We offer a range of recommendations to increase the breadth of biological models generated in the bio-inspired design process.

2.
CBE Life Sci Educ ; 20(4): ar65, 2021 12.
Article in English | MEDLINE | ID: mdl-34678042

ABSTRACT

Scientific research has a culture that can be challenging to enter. Different aspects of this culture may act as barriers or entry points for different people. Recognition of these barriers and entry points requires identifying aspects of the culture of scientific research and synthesizing them into a single, descriptive framework. A systematic literature review encompassing a two-pronged search strategy, descriptive mapping of ideas, and consensus building, was performed to identify aspects of scientific research culture. This resulted in the Culture of Scientific Research (CSR) Framework, composed of 31 cultural aspects categorized as either Practices, Norms/Expectations, or Values/Beliefs. Additional evidence of validity was collected through a survey that asked biological researchers to indicate which aspects in the framework were relevant to their experiences of research. The majority of survey respondents (n = 161) perceived the 31 aspects in the CSR Framework as relevant to biological research. This framework provides a consistent structure for describing the experiences of people engaging with the culture of scientific research. The literature review included literature from multiple disciplines, so the CSR Framework should be broadly applicable. Future applications of the CSR Framework include identifying possible barriers and entry points experienced by groups currently underrepresented in scientific research.


Subject(s)
Students , Humans , Surveys and Questionnaires
3.
CBE Life Sci Educ ; 20(4): ar57, 2021 12.
Article in English | MEDLINE | ID: mdl-34546098

ABSTRACT

Following professional development (PD), implementation of contemporary topics into high school biology requires teachers to make critical decisions regarding integration of novel content into existing course scope and sequence. Often exciting topics, such as neuroscience, do not perfectly align with standards. Despite commitment to enacting what was learned in the PD, teachers must adapt novel content to their perceptions of good teaching, local context, prior knowledge of their students, and state and district expectations. How teachers decide to integrate curricula encountered from PD programs may affect student outcomes. This mixed-methods study examined the relationship between curricular application strategies following an inquiry-based neuroscience PD and student learning. Post-PD curricular implementation was measured qualitatively through analysis of teacher action plans and classroom observations and quantitatively using hierarchical linear modeling to determine the impact of implementation on student performance. Participation in neuroscience PD predicted improved student learning compared with control teachers. Of the two distinct curricular implementation strategies, enacting a full unit produced significantly greater student learning than integrating neuroscience activities into existing biology units. Insights from this analysis should inform teacher implementation of new curricula after PD on other contemporary biology topics.


Subject(s)
Neurosciences , Students , Curriculum , Humans , Learning , Neurosciences/education , Schools
4.
Neuroscientist ; 25(5): 394-407, 2019 10.
Article in English | MEDLINE | ID: mdl-30895863

ABSTRACT

While neuroscience has elucidated the mechanisms underpinning learning and memory, accurate dissemination of this knowledge to teachers and educators has been limited. This review focuses on teacher professional development in neuroscience that harnessed the power of active-learning strategies and best educational practices resulting in increased teacher and student understanding of cognition and brain function. For teachers, the experience of learning a novel subject in an active manner enabled them to subsequently teach using similar strategies. Most important, participants viewed neuroscience as a frame for understanding why active-learning pedagogies work to engage and motivate students. Teachers themselves made connections applying neuroscience concepts to understand why learner-centered pedagogies are effective in promoting higher order thinking and deep learning in their students. Teachers planned and embraced pedagogies involving modeling, experimentation, discussion, analysis, and synthesis, increasing classroom cognitive engagement. Comprehending that everyone is in charge of changing their own brains is a tremendously powerful idea that may motivate science and non-science teachers to provide students opportunities to actively engage with content. Neuroscience courses for preservice and in-service teachers, provided as collaborations between scientists and teacher educators, can result in improved science education, pedagogy, and understanding of neuroscience.


Subject(s)
Neurosciences/education , Teacher Training , Humans , Professional Competence , School Teachers
5.
Int J STEM Educ ; 5(1): 4, 2018.
Article in English | MEDLINE | ID: mdl-30631694

ABSTRACT

BACKGROUND: Current reforms in K-12 STEM education call for integration between science, technology, engineering, and mathematics (STEM). Such integration of STEM disciplines at the K-12 level offers students an opportunity to experience learning in real-world, multidisciplinary contexts; however, there is little reported research about teachers' experiences in engaging in integrated STEM instruction. The purpose of this phenomenological multiple case study is to understand nine science teachers' first-time experiences in implementing integrated STEM curricular units in their middle school physical science classrooms. This study draws upon both classroom implementation data and teacher reflective interviews to illustrate different degrees of integrated STEM instruction and to understand teachers' challenges and successes with these varying approaches. RESULTS: Our results indicate three distinct cases of integration within our sample that represent low, medium, and high degrees of STEM integration throughout curriculum implementations. Interviews with teachers from each case revealed three themes that varied across teachers' experiences: the nature of integration, choosing between science and engineering, and student engagement and motivation. Teachers in all three cases were challenged to make explicit connections between science, engineering, and mathematics while simultaneously maintaining a motivating and engaging context for their students throughout their instruction. Further, it appears that the degree of STEM integration that occurs in instruction may be related to teachers' ability to make explicit connections between the disciplines. CONCLUSIONS: The work presented here informs educational researchers, policy makers, and K-12 STEM educators that there are several challenges when it comes to implementing new STEM initiatives in K-12 education. Although this work is limited to middle school physical science teachers' experiences with first-time STEM instruction, many of the identified themes are not content-specific; therefore, this work may shed light on general struggles that are common to educators who are integrating across content disciplines for the first time.

6.
Int J STEM Educ ; 5(1): 36, 2018.
Article in English | MEDLINE | ID: mdl-30631726

ABSTRACT

BACKGROUND: With the expansion of science, technology, engineering, and mathematics (STEM) schools all over the United States and the world, new roles for teachers are being created, and with these roles, identities are evolving. However, these roles and identities remain an ill-defined area in STEM. The purpose of this paper was to explore the developing STEM teachers' identities in emerging STEM schools, answering two research questions: (1) How do teachers define their roles as STEM teachers within a STEM school? (2) What do teachers identify as being important characteristics of STEM teachers? A multiple case study design was used to explore the research questions within a bounded context of two emerging STEM schools. Data for this study were drawn from semi-structured interviews conducted with eight teachers from two developing STEM schools within a large urban district in the Midwestern United States. Teams of teachers at each of the schools worked throughout the year to develop and implement their vision for STEM. RESULTS: Using an inductive data analysis process, three major themes that characterized a STEM teacher identity emerged. These were the unique nature of STEM teachers' identity; professional characteristics of STEM; and personal characteristics of STEM teachers. Collaboration, flexibility, awareness of students' needs, and advocates of equity and inclusion were identified as pivotal characteristics of STEM teachers. CONCLUSION: This study concluded that STEM teachers' identity can be viewed as a dynamic, evolving process that results from the interaction of personal and professional traits within new educational experiences exemplified by the STEM endeavor in their schools. An alignment between teachers' personal philosophy and STEM understanding is essential for the success in teaching in STEM schools.

7.
Int J STEM Educ ; 5(1): 46, 2018.
Article in English | MEDLINE | ID: mdl-30631736

ABSTRACT

BACKGROUND: Cooperative and inquiry-based pedagogies provide a context for classroom discourse in which students develop joint understanding of subject matter knowledge. Using the symbolic interactionist perspective that meaning is constructed as individuals interact with one another, we examined how student groups enrolled in an undergraduate general chemistry course developed sociochemical norms that influenced individual student understanding of chemical concepts. Sociochemical norms refer to the normative aspects of classroom microculture that regulate discourse on what counts as a table chemical justification and explanation. We describe how these sociochemical normative ideas were developed based on observational research and recordings of the student groups as they engaged in classroom discourse. RESULTS: Our analysis showed that students routinely developed chemistry-driven criteria within and across groups to explain the nature of dissolving ionic solids in water. Moreover, resultant sociochemical norms led to shifts in student understanding and the ways in which students reasoned about the causes of chemical phenomena under study. CONCLUSIONS: Our results indicate that group dialog influenced individual student conceptions of ionic compounds in solution and highlight the need to engage students in instructional activities that not only engage them in the multiple ways of representing chemical knowledge but also making public their views and participating in classroom discourse.

8.
Int J STEM Educ ; 4(1): 21, 2017.
Article in English | MEDLINE | ID: mdl-30631677

ABSTRACT

BACKGROUND: This study presents two teacher design teams (TDTs) during a professional development experience centered on science, technology, engineering, and mathematics (STEM)-integrated curriculum development. The main activity of the study, curriculum design, was framed as a design problem in order to better understand how teachers engaged with the complexities of integrated curriculum development. Additionally, Remillard's, (Review of Educational Research 75:211-246, 2005) teacher-curriculum "participatory relationship" provided a framework for further exploring teacher actions during the design process. Utilizing a case study research design, participant curriculum design conversations were audio-recorded for 12 days during a summer professional development experience. Constructed grounded theory and a method of selective coding revealed insights about the processes and supports that enable collaborative curriculum design. RESULTS: Results showed that when a TDT is not prompted and/or enabled to first lay out and articulate the overall value of a STEM-integrated curriculum, they will rightly follow their intuitions as classroom teachers and engage in the process accordingly. Second, involving practicing teachers in the curriculum design process requires complete "participation" with the curriculum ideas they are contemplating because in the end, the curriculum's resultant lessons will be taught in their own and other teacher's classrooms. CONCLUSIONS: The findings from this study indicate the importance of "pushing" active classroom teachers from the design to the mapping arena by instituting curriculum development activities and/or strategies (i.e., processes) that might help a TDT develop a "voice" (Remillard, From Text to 'Lived' Resources:105-122, 2011) or "value" (Dorst, Design Studies 22:4-17, 2006) for the curriculum under development. If members of a TDT are willing to reveal their interpretations, perceptions, and beliefs about the conceptual ideas embedded within the curriculum being developed, both the teachers and curriculum being developed will benefit. Finally, teachers should be made aware of their roles and responsibilities, beyond superficial descriptions; and understand participation in STEM-integrated curriculum design brings with it the likelihood their individual ideas, perceptions, and beliefs will be integrated within the curriculum being developed.

9.
Educ Res ; 42(6): 317-329, 2013.
Article in English | MEDLINE | ID: mdl-26139861

ABSTRACT

Bruer (1997) advocated connecting neuroscience and education indirectly through the intermediate discipline of psychology. We argue for a parallel route: the neurobiology of learning, and in particular the core concept of plasticity, have the potential to directly transform teacher preparation and professional development, and ultimately to affect how students think about their own learning. We present a case study of how the core concepts of neuroscience can be brought to in-service teachers - the BrainU workshops. We then discuss how neuroscience can be meaningfully integrated into pre-service teacher preparation, focusing on institutional and cultural barriers.

SELECTION OF CITATIONS
SEARCH DETAIL
...