Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncolytics ; 23: 534-546, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34901395

ABSTRACT

Immunotherapy including chimeric antigen receptor (CAR) T cell therapy has revolutionized modern cancer therapy and has achieved remarkable remission and survival rates for several malignancies with historically dismal outcomes. The hinge of the CAR connects the antigen binding to the transmembrane domain and can be exploited to confer features to CAR T cells including additional stimulation, targeted elimination or detection and enrichment of the genetically modified cells. For establishing a novel hinge derived from human CD34, we systematically tested CD34 fragments of different lengths, all containing the binding site of the QBend-10 monoclonal antibody, in a FMC63-based CD19 CAR lentiviral construct. A final construct of 99 amino acids called C6 proved to be the best candidate for flow cytometry-based detection of CAR T cells and >95% enrichment of genetically modified T cells on MACS columns. The C6 hinge was functionally indistinguishable from the commonly used CD8α hinge in vitro as well as in in vivo experiments in NSG mice. We also showed that the C6 hinge can be used for a variety of different CARs and mediates high killing efficacy without unspecific activation by target antigen-negative cells, thus making C6 ideally suited as a universal hinge for CARs for clinical applications.

2.
J Pharmacol Exp Ther ; 368(2): 308-316, 2019 02.
Article in English | MEDLINE | ID: mdl-30409834

ABSTRACT

A potential CYP4B1 suicide gene application in engineered T-cell treatment of blood cancers has revived interest in the use of 4-ipomeanol (IPO) in gene-directed enzyme prodrug therapy, in which disposition of the administered compound may be critical. IPO contains one chiral center at the carbon bearing a secondary alcohol group; it was of interest to determine the effect of stereochemistry on 1) CYP4B1-mediated bioactivation and 2) (UGT)-mediated glucuronidation. First, (R)-IPO and (S)-IPO were synthesized and used to assess cytotoxicity in HepG2 cells expressing rabbit CYP4B1 and re-engineered human CYP4B1, where the enantiomers were found to be equipotent. Next, a sensitive UPLC-MS/MS assay was developed to measure the IPO-glucuronide diastereomers and product stereoselectivity in human tissue microsomes. Human liver and kidney microsomes generated (R)- and (S)-IPO-glucuronide diastereomers in ratios of 57:43 and 79:21, respectively. In a panel of 13 recombinantly expressed UGTs, UGT1A9 and UGT2B7 were the major isoforms responsible for IPO glucuronidation. (R)-IPO-glucuronide diastereoselectivity was apparent with each recombinant UGT, except UGT2B15 and UGT2B17, which favored the formation of (S)-IPO-glucuronide. Incubations with IPO and the UGT1A9-specific chemical inhibitor niflumic acid significantly decreased glucuronidation in human kidney, but only marginally in human liver microsomes, consistent with known tissue expression patterns of UGTs. We conclude that IPO glucuronidation in human kidney is mediated by UGT1A9 and UGT2B7. In human liver, it is mediated primarily by UGT2B7 and, to a lesser extent, UGT1A9 and UGT2B15. Overall, the lack of pronounced stereoselectivity for IPO's bioactivation in CYP4B1-transfected HepG2 cells, or for hepatic glucuronidation, suggests the racemate is an appropriate choice for use in suicide gene therapies.


Subject(s)
Glucuronides/metabolism , Microsomes/metabolism , Terpenes/chemistry , Terpenes/metabolism , Toxins, Biological/chemistry , Toxins, Biological/metabolism , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Microsomes/drug effects , Stereoisomerism , Terpenes/toxicity , Toxins, Biological/toxicity
3.
Anticancer Res ; 38(3): 1317-1325, 2018 03.
Article in English | MEDLINE | ID: mdl-29491055

ABSTRACT

BACKGROUND/AIM: Head and neck squamous cell carcinomas (HNSCCs) form a heterogeneous tumor entity located throughout the oral cavity, pharynx and larynx that is caused predominantly by chemically or virally induced carcinogenesis. Heterozygous germline mutations in cancer susceptibility genes might also lead to increased incidence of HNSCCs. As DNA stability is typically impaired in HNSCC cells and genes of the Fanconi anemia/BRCA DNA repair pathway can be mutated or down-regulated in HNSCCs, we investigated here whether germline mutations occur in the X-chromosomal FANCB as candidate gene. MATERIALS AND METHODS: Germline DNA of 85 consecutive HNSCC patients was sequenced. Missense alterations in FANCB were functionally tested in reference cells. RESULTS AND CONCLUSION: Four single nucleotide polymorphisms were identified, three of which were located in untranslated regions of FANCB (rs2188383, rs2375729, rs2905223) and predicted to be associated with normal function. One missense alteration, c.1004G>A resulting in p.G335E (rs41309679), in exon 4 was detected in five men in homozygous and in five women in heterozygous state. Four in silico prediction programs uniformally predicted p.G335E to be associated with loss-of-function of the protein. To clarify these predictions, we expressed the FANCB p.G335E protein in primary human FANCB deficient fibroblasts. Cell cycle analysis of these fibroblasts established that the FANCB p.G335E was functionally indistinguishable from the wildtype FANCB protein. Thus, functional studies in genetically defined cells showed that the p.G335E germline alteration in FANCB is not associated with impaired function.


Subject(s)
Carcinoma, Squamous Cell/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Genetic Predisposition to Disease/genetics , Head and Neck Neoplasms/genetics , Mutation, Missense , Adult , Aged , Carcinoma, Squamous Cell/pathology , Cell Cycle/genetics , Female , Fibroblasts/metabolism , Gene Frequency , Genotype , Germ-Line Mutation , Head and Neck Neoplasms/pathology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
4.
Oncoimmunology ; 6(1): e1250050, 2017.
Article in English | MEDLINE | ID: mdl-28197367

ABSTRACT

Activated and in vitro expanded natural killer (NK) cells have substantial cytotoxicity against many tumor cells, but their in vivo efficacy to eliminate solid cancers is limited. Here, we used chimeric antigen receptors (CARs) to enhance the activity of NK cells against Ewing sarcomas (EwS) in a tumor antigen-specific manner. Expression of CARs directed against the ganglioside antigen GD2 in activated NK cells increased their responses to GD2+ allogeneic EwS cells in vitro and overcame resistance of individual cell lines to NK cell lysis. Second-generation CARs with 4-1BB and 2B4 co-stimulatory signaling and third-generation CARs combining both co-stimulatory domains were all equally effective. By contrast, adoptive transfer of GD2-specific CAR gene-modified NK cells both by intratumoral and intraperitoneal delivery failed to eliminate GD2-expressing EwS xenografts. Histopathology review revealed upregulation of the immunosuppressive ligand HLA-G in tumor autopsies from mice treated with NK cells compared to untreated control mice. Supporting the relevance of this finding, in vitro co-incubation of NK cells with allogeneic EwS cells induced upregulation of the HLA-G receptor CD85j, and HLA-G1 expressed by EwS cells suppressed the activity of NK cells from three of five allogeneic donors against the tumor cells in vitro. We conclude that HLA-G is a candidate immune checkpoint in EwS where it can contribute to resistance to NK cell therapy. HLA-G deserves evaluation as a potential target for more effective immunotherapeutic combination regimens in this and other cancers.

5.
Curr Gene Ther ; 16(5): 309-320, 2017.
Article in English | MEDLINE | ID: mdl-28067166

ABSTRACT

Fanconi anemia (FA) is a rare inherited DNA disorder clinically characterized by congenital malformations, progressive bone marrow failure, and cancer susceptibility. Due to a strong survival advantage of spontaneously corrected 'normal' hematopoietic stem cells (HSCs) in a few patients, FA is considered a model disorder for genetic correction of autologous stem cells, where genetically corrected stem cells and their progeny have a strong in vivo selective advantage, ultimately leading to normal hematopoiesis. Despite these apparently ideal circumstances, three HSC gene therapy trials with gammaretroviral vectors (stage I) designed to cure the hematological manifestation of FA completely failed to provide long-term clinical benefits for patients, predominantly due to the combination of insufficient gene transfer technologies and incompletely understood FA HSC pathobiology. Currently, FA gene therapy is in stage II where, based on an improved understanding of the cellular defects in FA HSCs, consequently adapted transduction protocols are being used in two phase I/II trials for in vitro genetic correction of FANCA-deficient hematopoietic stem cells. These results are eagerly awaited. Independent from the outcome of these studies, technologies are already available that seem highly attractive for testing in FA. In stage III, this would ultimately include targeted in vivo correction of autologous HSCs by overexpression of nonintegrating lentiviral vectors with scaffold/matrix attachment region elements using specific envelopes as pseudotypes. Although currently still challenging, in a few years in vivo genome editing approaches will be readily available in stage IV, in which the delivery of the editing machinery/ complex is targeted to the autologous FA HSCs by the nonintegrating lentiviral vectors established in stage III. Even low levels of corrected stem cells will then quickly repopulate the entire hematopoiesis of the patient. We therefore are sanguine that in the future, genetic therapy can be used clinically for the correction of FA HSCs in the standard care of FA patients.


Subject(s)
Fanconi Anemia/therapy , Genetic Therapy/methods , Genetic Vectors/genetics , Lentivirus/genetics , Animals , Autografts , Fanconi Anemia/genetics , Gene Transfer Techniques , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Humans
6.
Protein Eng Des Sel ; 30(3): 205-216, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28073960

ABSTRACT

Human CYP4B1, a cytochrome P450 monooxygenase predominantly expressed in the lung, inefficiently metabolizes classical CYP4B1 substrates, such as the naturally occurring furan pro-toxin 4-ipomeanol (4-IPO). Highly active animal forms of the enzyme convert 4-IPO to reactive alkylating metabolite(s) that bind(s) to cellular macromolecules. By substitution of 13 amino acids, we restored the enzymatic activity of human CYP4B1 toward 4-IPO and this modified cDNA is potentially valuable as a suicide gene for adoptive T-cell therapies. In order to find novel pro-toxins, we tested numerous furan analogs in in vitro cell culture cytotoxicity assays by expressing the wild-type rabbit and variants of human CYP4B1 in human liver-derived HepG2 cells. To evaluate the CYP4B1 substrate specificities and furan analog catalysis, we optimized the N-terminal sequence of the CYP4B1 variants by modification/truncation and established their heterologous expression in Escherichia coli (yielding 70 and 800 nmol·l-1 of recombinant human and rabbit enzyme, respectively). Finally, spectral binding affinities and oxidative metabolism of the furan analogs by the purified recombinant CYP4B1 variants were analyzed: the naturally occurring perilla ketone was found to be the tightest binder to CYP4B1, but also the analog that was most extensively metabolized by oxidative processes to numerous non-reactive reaction products.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Escherichia coli , Gene Expression , Animals , Aryl Hydrocarbon Hydroxylases/biosynthesis , Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/isolation & purification , Catalysis , Escherichia coli/genetics , Escherichia coli/metabolism , Hep G2 Cells , Humans , Isoenzymes/biosynthesis , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Oxidation-Reduction , Rabbits , Substrate Specificity
7.
PLoS One ; 10(9): e0137110, 2015.
Article in English | MEDLINE | ID: mdl-26355749

ABSTRACT

CYP4B1 belongs to the cytochrome P450 family 4, one of the oldest P450 families whose members have been highly conserved throughout evolution. The CYP4 monooxygenases typically oxidize fatty acids to both inactive and active lipid mediators, although the endogenous ligand(s) is largely unknown. During evolution, at the transition of great apes to humanoids, the CYP4B1 protein acquired a serine instead of a proline at the canonical position 427 in the meander region. Although this alteration impairs P450 function related to the processing of naturally occurring lung toxins, a study in transgenic mice suggested that an additional serine insertion at position 207 in human CYP4B1 can rescue the enzyme stability and activity. Here, we report that the genomic insertion of a CAG triplet at the intron 5-exon 6 boundary in human CYP4B1 introduced an additional splice acceptor site in frame. During evolution, this change occurred presumably at the stage of Hominoidae and leads to two major isoforms of the CYP4B1 enzymes of humans and great apes, either with or without a serine 207 insertion (insSer207). We further demonstrated that the CYP4B1 enzyme with insSer207 is the dominant isoform (76%) in humans. Importantly, this amino acid insertion did not affect the 4-ipomeanol metabolizing activities or stabilities of the native rabbit or human CYP4B1 enzymes, when introduced as transgenes in human primary cells and cell lines. In our 3D modeling, this functional neutrality of insSer207 is compatible with its predicted location on the exterior surface of CYP4B1 in a flexible side chain. Therefore, the Ser207 insertion does not rescue the P450 functional activity of human CYP4B1 that has been lost during evolution.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Biological Evolution , RNA Splice Sites/genetics , Adult , Alternative Splicing/genetics , Animals , Aryl Hydrocarbon Hydroxylases/chemistry , Cell Death/drug effects , Enzyme Stability , HEK293 Cells , Hep G2 Cells , Humans , Models, Molecular , Mutagenesis, Insertional/genetics , Rabbits , Serine/genetics , Terpenes/pharmacology
8.
Biochem J ; 465(1): 103-14, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25247810

ABSTRACT

Mammalian CYP4B1 enzymes are cytochrome P450 mono-oxygenases that are responsible for the bioactivation of several exogenous pro-toxins including 4-ipomeanol (4-IPO). In contrast with the orthologous rabbit enzyme, we show here that native human CYP4B1 with a serine residue at position 427 is unable to bioactivate 4-IPO and does not cause cytotoxicity in HepG2 cells and primary human T-cells that overexpress these enzymes. We also demonstrate that a proline residue in the meander region at position 427 in human CYP4B1 and 422 in rabbit CYP4B1 is important for protein stability and rescues the 4-IPO bioactivation of the human enzyme, but is not essential for the catalytic activity of the rabbit CYP4B1 protein. Systematic substitution of native and p.S427P human CYP4B1 with peptide regions from the highly active rabbit enzyme reveals that 18 amino acids in the wild-type rabbit CYP4B1 protein are key for conferring high 4-IPO metabolizing activity. Introduction of 12 of the 18 amino acids that are also present at corresponding positions in other human CYP4 family members into the p.S427P human CYP4B1 protein results in a mutant human enzyme (P+12) that is as stable and as active as the rabbit wild-type CYP4B1 protein. These 12 mutations cluster in the predicted B-C loop through F-helix regions and reveal new amino acid regions important to P450 enzyme stability. Finally, by minimally re-engineering the human CYP4B1 enzyme for efficient activation of 4-IPO, we have developed a novel human suicide gene system that is a candidate for adoptive cellular therapies in humans.


Subject(s)
Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/metabolism , Biocatalysis , Proline/metabolism , Terpenes/metabolism , Animals , Biocatalysis/drug effects , Enzyme Stability/drug effects , Genes, Transgenic, Suicide , HEK293 Cells , Hep G2 Cells , Humans , Protein Engineering , Rabbits , Structure-Activity Relationship , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Terpenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...