Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 7798, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528603

ABSTRACT

Microwave photonics has adopted a number of important concepts and technologies over the recent pasts, including photonic integration, versatile programmability, and techniques for enhancing key radio frequency performance metrics such as the noise figure and the dynamic range. However, to date, these aspects have not been achieved simultaneously in a single circuit. Here, we report a multi-functional photonic integrated circuit that enables programmable filtering functions with record-high performance. We demonstrate reconfigurable filter functions with record-low noise figure and a RF notch filter with ultra-high dynamic range. We achieve this unique feature using versatile complex spectrum tailoring enabled by an all integrated modulation transformer and a double injection ring resonator as a multi-function optical filtering component. Our work breaks the conventional and fragmented approach of integration, functionality and performance that currently prevents the adoption of integrated MWP systems in real applications.

2.
Sci Adv ; 8(40): eabq2196, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36206345

ABSTRACT

Coherent optomechanical interaction known as stimulated Brillouin scattering (SBS) can enable ultrahigh resolution signal processing and narrow-linewidth lasers. SBS has recently been studied extensively in integrated waveguides; however, many implementations rely on complicated fabrication schemes. The absence of SBS in standard and mature fabrication platforms prevents its large-scale circuit integration. Notably, SBS in the emerging silicon nitride (Si3N4) photonic integration platform is currently out of reach because of the lack of acoustic guidance. Here, we demonstrate advanced control of backward SBS in multilayer Si3N4 waveguides. By optimizing the separation between two Si3N4 layers, we unlock acoustic waveguiding in this platform, potentially leading up to 15× higher Brillouin gain coefficient than previously possible in Si3N4 waveguides. We use the enhanced SBS gain to demonstrate a high-rejection microwave photonic notch filter. This demonstration opens a path to achieving Brillouin-based photonic circuits in a standard, low-loss Si3N4 platform.

3.
Opt Lett ; 47(1): 198-201, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34951916

ABSTRACT

Integrated mode-locked lasers are useful tools in microwave photonic applications as a local oscillator. In particular, hybrid integrated lasers could easily be integrated with passive processing circuits. In this Letter, we report on the self-mode-locking of a hybrid integrated laser comprising two indium phosphide gain sections and a silicon nitride feedback circuit that filters light using two ring resonators. The hybrid laser is shown to mode-lock and to have a mostly frequency-modulated field in the cavity using a stepped-heterodyne optical complex spectrum analysis. A mostly frequency modulated field output is good for high powers per line due to a more continuous emission, compared with mode-locked lasers using a saturable absorber; additionally, the filter limits the bandwidth of the comb, condensing the power to the fewer comb lines.

4.
Opt Express ; 29(11): 16563-16571, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154216

ABSTRACT

This paper describes the detailed characterization of a novel InP-Si3N4 dual laser module with results revealing relative intensity noise (RIN) as low as -165 dB/Hz and wide wavelength tunability (100 nm). The hybrid coupled laser is deployed in an unamplified 28 GBd 8 level pulse amplitude modulation (PAM) short-reach data center (DC) transmission system. System performance, which is experimentally evaluated in terms of received signal bit error ratio (BER), demonstrates the ability of the proposed laser module to support PAM-8 transmission across a 100 nm tuning range with less than 1 dB variance in receiver sensitivity over the operating wavelength range. Comparative performance studies not only indicate that the proposed source can outperform a commercial external cavity laser (ECL) in an intensity modulation/direct detection (IM/DD) link but also highlight the critical impact of RIN in the design of advanced modulation short-reach systems.

5.
Opt Express ; 28(15): 21713-21728, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752444

ABSTRACT

We demonstrate a hybrid integrated and widely tunable diode laser with an intrinsic linewidth as narrow as 40 Hz, achieved with a single roundtrip through a low-loss feedback circuit that extends the cavity length to 0.5 meter on a chip. Employing solely dielectrics for single-roundtrip, single-mode resolved feedback filtering enables linewidth narrowing with increasing laser power, without limitations through nonlinear loss. We achieve single-frequency oscillation with up to 23 mW fiber coupled output power, 70-nm wide spectral coverage in the 1.55 µm wavelength range with 3 mW output and obtain more than 60 dB side mode suppression. Such properties and options for further linewidth narrowing render the approach of high interest for direct integration in photonic circuits serving microwave photonics, coherent communications, sensing and metrology with highest resolution.

6.
Opt Express ; 27(19): 26842-26857, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674557

ABSTRACT

The development of large-scale optical quantum information processing circuits ground on the stability and reconfigurability enabled by integrated photonics. We demonstrate a reconfigurable 8×8 integrated linear optical network based on silicon nitride waveguides for quantum information processing. Our processor implements a novel optical architecture enabling any arbitrary linear transformation and constitutes the largest programmable circuit reported so far on this platform. We validate a variety of photonic quantum information processing primitives, in the form of Hong-Ou-Mandel interference, bosonic coalescence/anti-coalescence and high-dimensional single-photon quantum gates. We achieve fidelities that clearly demonstrate the promising future for large-scale photonic quantum information processing using low-loss silicon nitride.

7.
Opt Express ; 25(22): 27635-27645, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092234

ABSTRACT

We report a photonic integrated circuit implementation of an optical clock multiplier, or equivalently an optical frequency comb filter. The circuit comprises a novel topology of a ring-resonator-assisted asymmetrical Mach-Zehnder interferometer in a Sagnac loop, providing a reconfigurable comb filter with sub-GHz selectivity and low complexity. A proof-of-concept device is fabricated in a high-index-contrast stoichiometric silicon nitride (Si3N4/SiO2) waveguide, featuring low loss, small size, and large bandwidth. In the experiment, we show a very narrow passband for filters of this kind, i.e. a -3-dB bandwidth of 0.6 GHz and a -20-dB passband of 1.2 GHz at a frequency interval of 12.5 GHz. As an application example, this particular filter shape enables successful demonstrations of five-fold repetition rate multiplication of optical clock signals, i.e. from 2.5 Gpulses/s to 12.5 Gpulses/s and from 10 Gpulses/s to 50 Gpulses/s. This work addresses comb spectrum processing on an integrated platform, pointing towards a device-compact solution for optical clock multipliers (frequency comb filters) which have diverse applications ranging from photonic-based RF spectrum scanners and photonic radars to GHz-granularity WDM switches and LIDARs.

8.
Opt Express ; 24(6): 5715-27, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27136769

ABSTRACT

Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

9.
Opt Lett ; 40(23): 5618-21, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26625065

ABSTRACT

This work presents an integrated microwave photonics splitter with reconfigurable amplitude, phase, and delay offsets. The core components for this function are a dual-parallel Mach-Zehnder modulator, a deinterleaver, and tunable delay lines, all implemented using photonic integrated circuits. Using a demonstrator with an optical free spectral range of 25 GHz, we show experimentally the RF splitting function over two continuous bands, i.e., 0.9-11.6 GHz and 13.4-20 GHz. This result promises a deployable solution for creating wideband, reconfigurable RF splitters in integrated forms.

10.
Opt Express ; 22(14): 17079-91, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25090522

ABSTRACT

We propose and experimentally demonstrate the working principles of two novel microwave photonic (MWP) beamformer circuits operating with phase modulation (PM) and direct detection (DD). The proposed circuits incorporate two major signal processing functionalities, namely a broadband beamforming network employing ring resonator-based delay lines and an optical sideband manipulator that renders the circuit outputs equivalent to those of intensity-modulated MWP beamformers. These functionalities allow the system to employ low-circuit-complexity modulators and detectors, which brings significant benefits on the system construction cost and operation stability. The functionalities of the proposed MWP beamformer circuits were verified in experimental demonstrations performed on two sample circuits realized in Si(3)N(4)/SiO(2) waveguide technology. The measurements exhibit a 2 × 1 beamforming effect for an instantaneous RF transmission band of 3‒7 GHz, which is, to our best knowledge, the first verification of on-chip MWP beamformer circuits operating with PM and DD.

11.
Opt Express ; 21(22): 25999-6013, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24216825

ABSTRACT

In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

12.
Opt Express ; 21(19): 22937-61, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104179

ABSTRACT

We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleX™) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems.

13.
Opt Express ; 21(20): 23286-94, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24104242

ABSTRACT

We report a simple technique in microwave photonic (MWP) signal processing that allows the use of an optical filter with a shallow notch to exhibit a microwave notch filter with anomalously high rejection level. We implement this technique using a low-loss, tunable Si3N4 optical ring resonator as the optical filter, and achieved an MWP notch filter with an ultra-high peak rejection > 60 dB, a tunable high resolution bandwidth of 247-840 MHz, and notch frequency tuning of 2-8 GHz. To our knowledge, this is a record combined peak rejection and resolution for an integrated MWP filter.

14.
Opt Express ; 21(3): 3114-24, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23481769

ABSTRACT

We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.


Subject(s)
Interferometry/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Microwaves , Photons , Transducers
15.
Opt Express ; 20(24): 26499-510, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187505

ABSTRACT

We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.


Subject(s)
Filtration/instrumentation , Light , Microwaves , Optical Devices , Photons , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design , Humans
16.
Appl Opt ; 51(7): 789-802, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22410879

ABSTRACT

In this paper we describe the system integration and the experimental demonstration of a photonically beamformed four-element receiving array antenna for radio astronomy applications. To our knowledge, the work described here is the first demonstration of the squint-free, continuously tunable beamsteering capability offered by an integrated photonic beamformer based on optical ring resonator true-time-delay units, with measured radiation patterns. The integrated beamformer is realized in a low loss, complementary metal-oxide-semiconductor (CMOS) compatible optical waveguide technology. The measurements show a wideband, continuous beamsteering operation over a steering angle of 23.5 degrees and an instantaneous bandwidth of 500 MHz limited only by the measurement setup.

17.
Opt Express ; 19(22): 21475-84, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22108997

ABSTRACT

We report, for the first time, an integrated photonic signal processor consisting of a reconfigurable optical delay line (ODL) with a separate carrier tuning (SCT) unit and an optical sideband filter on a single CMOS compatible photonic chip. The processing functionalities are carried out with optical ring resonators as building blocks. We show that the integrated approach together with the use of SCT technique allows the implementation of a wideband, fully-tunable ODL with reduced complexity. To highlight the functionalities of the processor, we demonstrate a reconfigurable microwave photonic filter where the ODL has been configured in a bandwidth over 1 GHz.

18.
Opt Express ; 19(23): 23162-70, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109196

ABSTRACT

We report the design and characterization of Si3N4/SiO2 optical waveguides which are specifically developed for optical delay lines in microwave photonics (MWP) signal processing applications. The waveguide structure consists of a stack of two Si3N4 stripes and SiO2 as an intermediate layer. Characterization of the waveguide propagation loss was performed in race track-shaped optical ring resonators (ORRs) with a free-spectral range of 20 GHz and a bending radius varied from 50 µm to 125 µm. A waveguide propagation loss as low as 0.095 dB/cm was measured in the ORRs with bend radii ≥ 70 µm. Using the waveguide technology two types of RF-modulated optical sideband filters with high sideband suppression and small transition band consisting of an Mach-Zehnder interferometer and ORRs are also demonstrated. These results demonstrate the potential of the waveguide technology to be applied to construct compact on-chip MWP signal processors.

19.
Opt Express ; 19(25): 24838-48, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22273877

ABSTRACT

We report and experimentally demonstrate the generation of impulse radio ultrawideband (UWB) pulses using a photonic chip frequency discriminator. The discriminator consists of three add-drop optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. This discriminator chip in combination with a phase modulator forms a temporal differentiator where phase modulation is converted to intensity modulation (PM-IM conversion). By means of tailoring the discriminator response using either the individual or the cascade of drop and through responses of the ORRs, first-order or second-order temporal differentiations are obtained. Using this principle, the generation of UWB monocycle, doublet and modified doublet pulses are demonstrated. The use of this CMOS-compatible discriminator is promising for the realization of a compact and low cost UWB transmitter.


Subject(s)
Optical Devices , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Radio Waves
20.
Opt Express ; 18(26): 27359-70, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21197014

ABSTRACT

We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.


Subject(s)
Microwaves , Optical Devices , Telecommunications/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...