Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 33888, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27667717

ABSTRACT

A twice-as-smart ligand is a small molecule that experiences a structural switch upon interaction with its target (i.e., smart ligand) that concomitantly triggers its fluorescence (i.e., smart probe). Prototypes of twice-as-smart ligands were recently developed to track and label G-quadruplexes: these higher-order nucleic acid structures originate in the assembly of four guanine(G)-rich DNA or RNA strands, whose stability is imparted by the formation and the self-assembly of G-quartets. The first prototypes of twice-as-smart quadruplex ligands were designed to exploit the self-association of quartets, being themselves synthetic G-quartets. While their quadruplex recognition capability has been thoroughly documented, some doubts remain about the precise photophysical mechanism that underlies their peculiar spectroscopic properties. Here, we uncovered this mechanism via complete theoretical calculations. Collected information was then used to develop a novel application of twice-as-smart ligands, as efficient chemical sensors of bacterial signaling pathways via the fluorescent detection of naturally occurring extracellular quadruplexes formed by cyclic dimeric guanosine monophosphate (c-di-GMP).

2.
Mol Biosyst ; 10(6): 1568-75, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24705858

ABSTRACT

Cyclic dinucleotides have emerged as second messengers that regulate diverse processes in bacteria, as well as regulating the production of type I interferons in metazoans. Fluorescent sensors for these important second messengers are highly sought-after for high-throughput inhibitor discovery, yet most sensors reported to date are not amenable for high-throughput screening purposes. Herein, we demonstrate that a new analog, 3',3'-cG(d2AP)MP, which is a 2-aminopurine (2AP)-containing cyclic dinucleotide, self-associates in the presence of Mn(2+) with an association constant of 120,000 M(-1). 3'3'-cG(d2AP)MP can also form a heterodimer with cGAMP, activator of immune regulator, STING, or the bacterial biofilm regulator, c-di-GMP in the presence of Mn(II). Upon dimer formation, the fluorescence of 3',3'-cG(d2AP)MP is quenched and this provides a convenient method to monitor the enzymatic processing of both DGC and PDE enzymes, opening up several opportunities for the discovery of inhibitors of nucleotide signaling.


Subject(s)
2-Aminopurine/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/chemistry , Nucleotides, Cyclic/chemistry , Biofilms , Fluorescence , Molecular Probes/chemistry , Second Messenger Systems , Signal Transduction
3.
Mol Biosyst ; 10(5): 970-1003, 2014 May.
Article in English | MEDLINE | ID: mdl-24643211

ABSTRACT

This review highlights various methods that can be used for a sensitive detection of nucleic acids without using thermal cycling procedures, as is done in PCR or LCR. Topics included are nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), loop-mediated amplification (LAMP), Invader assay, rolling circle amplification (RCA), signal mediated amplification of RNA technology (SMART), helicase-dependent amplification (HDA), recombinase polymerase amplification (RPA), nicking endonuclease signal amplification (NESA) and nicking endonuclease assisted nanoparticle activation (NENNA), exonuclease-aided target recycling, Junction or Y-probes, split DNAZyme and deoxyribozyme amplification strategies, template-directed chemical reactions that lead to amplified signals, non-covalent DNA catalytic reactions, hybridization chain reactions (HCR) and detection via the self-assembly of DNA probes to give supramolecular structures. The majority of these isothermal amplification methods can detect DNA or RNA in complex biological matrices and have great potential for use at point-of-care.


Subject(s)
DNA/analysis , Nucleic Acid Amplification Techniques/methods , RNA/analysis , Base Sequence , Biocatalysis , DNA/chemistry , Nanostructures/chemistry , Nucleic Acid Hybridization , RNA/chemistry
4.
Methods ; 64(3): 185-98, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24135042

ABSTRACT

In the last decade, there has been an explosion in the use of G-quadruplex labels to detect various analytes, including DNA/RNA, proteins, metals and other metabolites. In this review, we focus on strategies for the detection of nucleic acids, using G-quadruplexes as detection labels or as enzyme labels that amplify detection signals. Methods to detect other analytes are briefly mentioned. We highlight various strategies, including split G-quadruplex, hemin-G-quadruplex conjugates, molecular beacon G-quadruplex or inhibited G-quadruplex probes. The tandem use of G-quadruplex labels with various DNA-modifying enzymes, such as polymerases (used for rolling circle amplification), exonucleases and endonucleases, is also discussed. Some of the detection modalities that are discussed in this review include fluorescence, colorimetric, chemiluminescence, and electrochemical methods.


Subject(s)
Biosensing Techniques , Polydeoxyribonucleotides/chemistry , Base Sequence , Electrochemical Techniques , Fluorescent Dyes/chemistry , G-Quadruplexes , Hemin/chemistry , Humans , Nucleic Acid Amplification Techniques , Nucleic Acids/analysis , Nucleic Acids/chemistry , Polydeoxyribonucleotides/analysis
5.
Chem Soc Rev ; 42(1): 305-41, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23023210

ABSTRACT

For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.


Subject(s)
Adenosine Monophosphate/physiology , Bacterial Infections/physiopathology , Bacterial Physiological Phenomena , Guanosine Monophosphate/physiology , Quorum Sensing , Signal Transduction , Bacteria/classification , Bacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...