Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Child Psychol ; 242: 105892, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492555

ABSTRACT

Recent evidence suggests that using finger-based strategies is beneficial for the acquisition of basic numerical skills. There are basically two finger-based strategies to be distinguished: (a) finger counting (i.e., extending single fingers successively) and (b) finger number gesturing (i.e., extending fingers simultaneously to represent magnitudes). In this study, we investigated both spontaneous and prompted finger counting and finger number gesturing as well as their contribution to basic numerical skills in 3- to 5-year-olds (N = 156). Results revealed that only 6% of children spontaneously used their fingers for counting when asked to name a specific number of animals, whereas 59% applied finger number gesturing to show their age. This indicates that the spontaneous use of finger-based strategies depends heavily on the specific context. Moreover, children performed significantly better in prompted finger counting than in finger number gesturing, suggesting that both strategies build on each other. Finally, both prompted finger counting and finger number gesturing significantly and individually predicted counting, cardinal number knowledge, and basic arithmetic. These results indicate that finger counting and finger number gesturing follow and positively relate to numerical development.


Subject(s)
Fingers , Knowledge , Child , Humans , Child, Preschool , Cross-Sectional Studies , Mathematics
2.
Cogn Process ; 22(1): 93-104, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33021730

ABSTRACT

In the present study, we investigated whether structured quantities like finger or dice patterns are enumerated better than unstructured quantities because they may not require counting. Moreover, we hypothesized children's mastery of structured quantities to predict their later arithmetic performance longitudinally. In particular, we expected that children more proficient in enumerating structured quantities early in their numerical development, should develop more effective calculation strategies later because they may rely on counting less. Therefore, we conducted a longitudinal study (including 116 children, 58 girls) over the course of about 7 months from preschool (at about 6 years of age) to the middle of first grade. Results showed that structured quantities were indeed enumerated more accurately and faster than unstructured quantities in preschool. Additionally, we observed significant associations of enumeration of structured and unstructured with children's addition performance in first grade. However, regression analysis indicated only enumeration of structured but not unstructured quantities to significantly predict later addition performance. In sum, this longitudinal study clearly indicates that mastery of structured quantities seems to be beneficial for children's development of basic arithmetic abilities.


Subject(s)
Fingers , Child , Child, Preschool , Educational Status , Female , Humans , Longitudinal Studies , Mathematics
3.
Front Psychol ; 11: 1012, 2020.
Article in English | MEDLINE | ID: mdl-32528379

ABSTRACT

The well-documented association between fingers and numbers is not only based on the observation that most children use their fingers for counting and initial calculation, but also on extensive behavioral and neuro-functional evidence. In this article, we critically review developmental studies evaluating the association between finger sensorimotor skills (i.e., finger gnosis and fine motor skills) and numerical abilities. In sum, reviewed studies were found to provide evidential value and indicated that both finger gnosis and fine motor skills predict measures of counting, number system knowledge, number magnitude processing, and calculation ability. Therefore, specific and unique contributions of both finger gnosis and fine motor skills to the development of numerical skills seem to be substantiated. Through critical consideration of the reviewed evidence, we suggest that the association of finger gnosis and fine motor skills with numerical abilities may emerge from a combination of functional and redeployment mechanisms, in which the early use of finger-based numerical strategies during childhood might be the developmental process by which number representations become intertwined with the finger sensorimotor system, which carries an innate predisposition for said association to unfold. Further research is nonetheless necessary to clarify the causal mechanisms underlying this association.

4.
Front Psychol ; 11: 871, 2020.
Article in English | MEDLINE | ID: mdl-32508712

ABSTRACT

Visual-spatial abilities (VSA) are considered a building block of early numerical development. They are intuitively acquired in early childhood and differentiate in further development. However, when children enter school, there already are considerable individual differences in children's visual-spatial and numerical abilities. To better understand this diversity, it is necessary to empirically evaluate the development as well as the latent structure of early VSA as proposed by the 2 by 2 taxonomy of Newcombe and Shipley (2015). In the present study, we report on a tablet-based assessment of VSA using the digital application (app) MaGrid in kindergarten children aged 4-6 years. We investigated whether the visual-spatial tasks implemented in MaGrid are sensitive to replicate previously observed age differences in VSA and thus a hierarchical development of VSA. Additionally, we evaluated whether the selected tasks conform to the taxonomy of VSA by Newcombe and Shipley (2015) applying a confirmatory factor analysis (CFA) approach. Our results indicated that the hierarchical development of VSA can be measured using MaGrid. Furthermore, the CFA substantiated the hypothesized factor structure of VSA in line with the dimensions proposed in the taxonomy of Newcombe and Shipley (2015). Taken together, the present results advance our knowledge to the (hierarchical) development as well as the latent structure of early VSA in kindergarten children.

5.
Cogn Process ; 21(1): 95-103, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31701377

ABSTRACT

There is a well-documented association between fingers and numbers, which was claimed to stem from the use of finger-based strategies for counting and calculating during childhood. Recently, it has been argued that this may lead to a concomitant activation of finger-based alongside other numerical representations when encountering single-digit numbers. Indeed, the occurrence of such a co-activation is supported by observed influences of finger counting habits on different numerical tasks, including single-digit arithmetic problem solving. In this study, we pursued the question whether the influence of finger-based representations on arithmetic generalizes to multi-digit arithmetic by investigating the association between the recognition of canonical and non-canonical finger patterns and multi-digit arithmetic in adults. Results indicated that canonical finger-based numerical representations were significantly associated with addition performance only, whereas non-canonical finger-based representations were associated significantly with all four arithmetic operations. We argue that, because non-canonical patterns do not benefit from the iconicity of canonical patterns, their magnitude may need to be constructed through magnitude manipulation which may in turn increase associations with mental arithmetic. In sum, our findings provide converging evidence for a functional association between finger-based representations and arithmetic performance.


Subject(s)
Fingers/physiology , Mathematics , Psychomotor Performance/physiology , Adolescent , Adult , Cognition , Female , Humans , Male , Mental Recall , Middle Aged , Problem Solving , Reaction Time , Recognition, Psychology , Young Adult
6.
J Exp Child Psychol ; 146: 1-16, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26895483

ABSTRACT

Recent studies indicated that finger gnosis (i.e., the ability to perceive and differentiate one's own fingers) is associated reliably with basic numerical competencies. In this study, we aimed at examining whether finger gnosis is also a unique predictor for initial arithmetic competencies at the beginning of first grade-and thus before formal math instruction starts. Therefore, we controlled for influences of domain-specific numerical precursor competencies, domain-general cognitive ability, and natural variables such as gender and age. Results from 321 German first-graders revealed that finger gnosis indeed predicted a unique and relevant but nevertheless only small part of the variance in initial arithmetic performance (∼1%-2%) as compared with influences of general cognitive ability and numerical precursor competencies. Taken together, these results substantiated the notion of a unique association between finger gnosis and arithmetic and further corroborate the theoretical idea of finger-based representations contributing to numerical cognition. However, the only small part of variance explained by finger gnosis seems to limit its relevance for diagnostic purposes.


Subject(s)
Cognition , Fingers , Mathematics , Touch Perception , Agnosia , Analysis of Variance , Body Image , Child , Child, Preschool , Female , Germany , Humans , Male
7.
Front Hum Neurosci ; 8: 1062, 2014.
Article in English | MEDLINE | ID: mdl-25628559

ABSTRACT

Numerical cognition has long been considered the perfect example of abstract information processing. Nevertheless, there is accumulating evidence in recent years suggesting that the representation of number magnitude may not be entirely abstract but may present a specific case of embodied cognition rooted in the sensory and bodily experiences of early finger counting and calculating. However, so far none of the existing models of numerical development considers the influence of finger-based representations. Therefore, we make first suggestions on (i) how finger-based representations may be integrated into a current model of numerical development; and (ii) how they might corroborate the acquisition of basic numerical competencies at different development levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...