Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gynecol Oncol ; 184: 67-73, 2024 May.
Article in English | MEDLINE | ID: mdl-38290412

ABSTRACT

OBJECTIVE: Authors evaluated the performance of a commercially available next-generation sequencing assay kit; this was based on genomic content from Illumina's TruSight™ Oncology 500 research assay that identifies BRCA variants and proprietary algorithms licensed from Myriad and, with additional genomic content, measures the homologous recombination deficiency (HRD) genomic instability score (GIS) in tumor tissue (TSO 500 HRD assay). METHODS: Data from the TSO 500 HRD assay were compared with data from the Myriad MyChoice®CDx PLUS assay (Myriad assay). Prevalence rates for overall HRD status and BRCA mutations (a deleterious or suspected deleterious BRCA1 or BRCA2 mutation or both) and assay agreement rates for HRD GIS and BRCA analysis were assessed in ovarian tumor samples. Pearson correlations of the continuous HRD GIS and analytic sensitivity and specificity were evaluated. RESULTS: The prevalence of overall HRD positivity was 51.2% (TSO 500 HRD assay) versus 49.2% (Myriad assay) and the prevalence of BRCA mutations was 27.6% (TSO 500 HRD assay) versus 25.5% (Myriad assay). After post-processing optimization, concordance of the HRD GIS was 0.980 in all samples and 0.976 in the non-BRCA mutation cohort; the area under the receiver operating characteristic curve was 0.995 and 0.992, respectively. CONCLUSIONS: Comparison between the Illumina and Myriad assays showed that overall HRD status, the individual components of BRCA analysis, and HRD GIS detection results were highly concordant (>93%), suggesting the TSO 500 HRD assay will approach the analytical accuracy of the FDA-approved Myriad assay.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , Homologous Recombination , High-Throughput Nucleotide Sequencing/methods , United States/epidemiology , Mutation , BRCA1 Protein/genetics , Genomic Instability , BRCA2 Protein/genetics , Reagent Kits, Diagnostic/standards , United States Food and Drug Administration , Middle Aged , Genes, BRCA1
2.
Nat Plants ; 5(9): 980-990, 2019 09.
Article in English | MEDLINE | ID: mdl-31477888

ABSTRACT

Self-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were selfed for six generations. We show that heterozygous, putatively deleterious single nucleotide polymorphisms are preferentially lost from the genome during selfing. Deleterious single nucleotide polymorphisms were lost more rapidly in regions of high recombination, presumably because recombination increases the efficacy of selection by uncoupling linked variants. Overall, heterozygosity decreased more slowly than expected, by an estimated 35% to 40% per generation instead of the expected 50%, perhaps reflecting pervasive associative overdominance. Finally, three lines exhibited marked decreases in genome size due to the purging of transposable elements. Genome loss was more likely to occur for lineages that began with larger genomes with more transposable elements and chromosomal knobs. These three lines purged an average of 398 Mb from their genomes, an amount equivalent to three Arabidopsis thaliana genomes per lineage, in only a few generations.


Subject(s)
Genome, Plant , Loss of Heterozygosity , Polymorphism, Single Nucleotide , Self-Fertilization , Zea mays/physiology , Zea mays/genetics
3.
Genome Biol Evol ; 10(3): 803-815, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29608716

ABSTRACT

Transposable elements (TEs) compose the majority of angiosperm DNA. Plants counteract TE activity by silencing them epigenetically. One form of epigenetic silencing requires 21-22 nt small interfering RNAs that act to degrade TE mRNA and may also trigger DNA methylation. DNA methylation is reinforced by a second mechanism, the RNA-dependent DNA methylation (RdDM) pathway. RdDM relies on 24 nt small interfering RNAs and ultimately establishes TEs in a quiescent state. These host factors interact at a systems level, but there have been no system level analyses of their interactions. Here, we define a deterministic model that represents the propagation of active TEs, aspects of the host response and the accumulation of silenced TEs. We describe general properties of the model and also fit it to biological data in order to explore two questions. The first is why two overlapping pathways are maintained, given that both are likely energetically expensive. Under our model, RdDM silenced TEs effectively even when the initiation of silencing was weak. This relationship implies that only a small amount of RNAi is needed to initiate TE silencing, but reinforcement by RdDM is necessary to efficiently counter TE propagation. Second, we investigated the reliance of the host response on rates of TE deletion. The model predicted that low levels of deletion lead to few active TEs, suggesting that silencing is most efficient when methylated TEs are retained in the genome, thereby providing one explanation for the large size of plant genomes.


Subject(s)
Arabidopsis/genetics , DNA Transposable Elements/genetics , Epigenesis, Genetic/genetics , Genome, Plant/genetics , DNA Methylation/genetics , Gene Expression Regulation, Plant , Gene Silencing , RNA, Messenger/genetics , RNA, Small Interfering/genetics
4.
Front Microbiol ; 8: 2478, 2017.
Article in English | MEDLINE | ID: mdl-29326663

ABSTRACT

The milpa is a traditional maize-based polyculture in Mexico that is typically practiced as rainfed agriculture. Because milpa cultivation has been practiced over a vast range of environmental and cultural conditions, this agroecosystem is recognized as an important repository of biological and cultural diversity. As for any agroecosystem, the relationship between plant development and the biogeochemical processes of the soil is critical. Although the milpa has been studied from different perspectives, the diversity and structure of microbial communities within milpa soils remain largely unexplored. In this study, we surveyed a milpa system in Central Mexico across cropping season: before planting (dry season; t1), during the early growth of plants (onset of the rainy season; t2), and before harvest (end of the rainy season; t3). In order to examine changes in community structure through time, we characterized bacterial diversity through high-throughput sequencing of 16S rRNA gene amplicons and recorded the nutrient status of multiple (5-10) soil samples from our milpa plots. We estimated microbial diversity from a total of 90 samples and constructed co-occurrence networks. Although we did not find significant changes in diversity or composition of bacterial communities across time, we identified significant rearrangements in their co-occurrence network structure. We found particularly drastic changes between the first and second time points. Co-occurrence analyses showed that the bacterial community changed from a less structured network at (t1) into modules with a non-random composition of taxonomic groups at (t2). We conclude that changes in bacterial communities undetected by standard diversity analyses can become evident when performing co-occurrence network analyses. We also postulate possible functional associations among keystone groups suggested by biogeochemical processes. This study represents the first contribution on soil microbial diversity of a maize-based polyculture and shows its dynamic nature in short-term scales.

5.
PLoS One ; 11(3): e0150002, 2016.
Article in English | MEDLINE | ID: mdl-26950546

ABSTRACT

DNA methylation has the potential to influence plant growth and development through its influence on gene expression. To date, however, the evidence from plant systems is mixed as to whether patterns of DNA methylation vary significantly among tissues and, if so, whether these differences affect tissue-specific gene expression. To address these questions, we analyzed both bisulfite sequence (BSseq) and transcriptomic sequence data from three biological replicates of two tissues (leaf and floral bud) from the model grass species Brachypodium distachyon. Our first goal was to determine whether tissues were more differentiated in DNA methylation than explained by variation among biological replicates. Tissues were more differentiated than biological replicates, but the analysis of replicated data revealed high (>50%) false positive rates for the inference of differentially methylated sites (DMSs) and differentially methylated regions (DMRs). Comparing methylation to gene expression, we found that differential CG methylation consistently covaried negatively with gene expression, regardless as to whether methylation was within genes, within their promoters or even within their closest transposable element. The relationship between gene expression and either CHG or CHH methylation was less consistent. In total, CG methylation in promoters explained 9% of the variation in tissue-specific expression across genes, suggesting that CG methylation is a minor but appreciable factor in tissue differentiation.


Subject(s)
Brachypodium/genetics , Cytosine/metabolism , DNA Methylation , Flowers/genetics , Gene Expression Regulation, Plant , Guanine/metabolism , Plant Leaves/genetics , Organ Specificity , Promoter Regions, Genetic/genetics
6.
Curr Opin Plant Biol ; 18: 1-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24424204

ABSTRACT

Epigenetics was envisioned as a topic to inform evolutionary theory, but the interplay between epigenetics and evolution has received little attention. With the advent of high-throughput methods, it is now routine to measure the genome-wide distribution of epigenetic marks, and these genome-wide patterns are providing insights into evolutionary processes. For example, DNA methylation is associated with transposable element silencing but also with repression of the expression of nearby genes, perhaps caused by the spread of methylation into regulatory regions. This repressive effect, which is typically deleterious, is acted upon by purifying selection. These dynamics may also govern the outcome of hybridization and polyploid events by affecting homoeolog expression. Finally, genes are also often methylated, but the implications of genic methylation for plant gene and genome evolution are not yet characterized fully.


Subject(s)
Epigenesis, Genetic , Evolution, Molecular , Genome, Plant/genetics , DNA Methylation/genetics , DNA Transposable Elements/genetics , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...