Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 2(2): 798-807, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-36133240

ABSTRACT

Zinc sulfide is an important wide-band gap semi-conductor and dithiocarbamate complexes [Zn(S2CNR2)2] find widespread use as single-source precursors for the controlled synthesis of ZnS nanoparticulate modifications. Decomposition of [Zn(S2CNiBu2)2] in oleylamine gives high aspect ratio wurtzite nanowires, the average length of which was increased upon addition of thiuram disulfide to the decomposition mixture. To provide further insight into the decomposition process, X-ray absorption spectroscopy (XAS) of [Zn(S2CNMe2)2] was performed in the solid-state, in non-coordinating xylene and in oleylamine. In the solid-state, dimeric [Zn(S2CNMe2)2]2 was characterised in accord with the single crystal X-ray structure, while in xylene this breaks down into tetrahedral monomers. In situ XAS in oleylamine (RNH2) shows that the coordination sphere is further modified, amine binding to give five-coordinate [Zn(S2CNMe2)2(RNH2)]. This species is stable to ca. 70 °C, above which amine dissociates and at ca. 90 °C decomposition occurs to generate ZnS. The relatively low temperature onset of nanoparticle formation is associated with amine-exchange leading to the in situ formation of [Zn(S2CNMe2)(S2CNHR)] which has a low temperature decomposition pathway. Combining these observations with the previous work of others allows us to propose a detailed mechanistic scheme for the overall process.

2.
Nanoscale Adv ; 1(8): 3056-3066, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-36133587

ABSTRACT

We report the use of cheap, readily accessible and easy to handle di-isobutyl-dithiocarbamate complexes, [M(S2CNiBu2) n ], as single source precursors (SSPs) to ternary sulfides of iron-nickel, iron-copper and nickel-cobalt. Varying decomposition temperature and precursor concentrations has a significant effect on both the phase and size of the nanomaterials, and in some instances meta-stable phases are accessible. Decomposition of [Fe(S2CNiBu2)3]/[Ni(S2CNiBu2)2] at ca. 210-230 °C affords metastable FeNi2S4 (violarite) nanoparticles, while at higher temperatures the thermodynamic product (Fe,Ni)9S8 (pentlandite) results. Addition of tetra-isobutyl-thiuram disulfide to the decomposition mixture can significantly affect the nature of the product at any particular temperature-concentration, being attributed to suppression of the intramolecular Fe(iii) to Fe(ii) reduction. Attempts to replicate this simple approach to ternary metal sulfides of iron-indium and iron-zinc were unsuccessful, mixtures of binary metal sulfides resulting. Oleylamine is non-innocent in these transformations, and we propose that SSP decomposition occurs via primary-secondary backbone amide-exchange with primary dithiocarbamate complexes, [M(S2CNHoleyl) n ], being the active decomposition precursors.

3.
Nanoscale Adv ; 1(8): 2965-2978, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-36133625

ABSTRACT

Nanoparticulate iron sulfides have many potential applications and are also proposed to be prebiotic catalysts for the reduction of CO2 to biologically important molecules, thus the development of reliable routes to specific phases with controlled sizes and morphologies is important. Here we focus on the use of iron dithiocarbamate complexes as single source precursors (SSPs) to generate greigite and pyrrhotite nanoparticles. Since these minerals contain both iron(iii) and iron(ii) centres, SSPs in both oxidation states, [Fe(S2CNR2)3] and cis-[Fe(CO)2(S2CNR2)2] respectively, have been utilised. Use of this Fe(ii) precursor is novel and it readily loses both carbonyls in a single step (as shown by TGA measurements) providing an in situ source of the extremely air-sensitive Fe(ii) dithiocarbamate complexes [Fe(S2CNR2)2]. Decomposition of [Fe(S2CNR2)3] alone in oleylamine affords primarily pyrrhotite, although by careful control of reaction conditions (ca. 230 °C, 40-50 nM SSP) a window exists in which pure greigite nanoparticles can be isolated. With cis-[Fe(CO)2(S2CNR2)2] we were unable to produce pure greigite, with pyrrhotite formation dominating, a similar situation being found with mixtures of Fe(ii) and Fe(iii) precursors. In situ X-ray absorption spectroscopy (XAS) studies showed that heating [Fe(S2CNiBu2)3] in oleylamine resulted in amine coordination and, at ca. 60 °C, reduction of Fe(iii) to Fe(ii) with (proposed) elimination of thiuram disulfide (S2CNR2)2. We thus carried out a series of decomposition studies with added thiuram disulfide (R = iBu) and found that addition of 1-2 equivalents led to the formation of pure greigite nanoparticles between 230 and 280 °C with low SSP concentrations. Average particle size does not vary significantly with increasing concentration, thus providing a convenient route to ca. 40 nm greigite nanoparticles. In situ XAS studies have been carried out and allow a decomposition pathway for [Fe(S2CNiBu2)3] in oleylamine to be established; reduction of Fe(iii) to Fe(ii) reduction triggers substitution of the secondary amide backbone by oleylamine (RNH2) resulting in the in situ formation of a primary dithiocarbamate derivative [Fe(RNH2)2(S2CNHR)2]. This in turn extrudes RNCS to afford molecular precursors of the observed FeS nanomaterials. The precise role of thiuram disulfide in the decomposition process is unknown, but it likely plays a part in controlling the Fe(iii)-Fe(ii) equilibrium and may also act as a source of sulfur allowing control over the Fe : S ratio in the mineral products.

4.
ACS Appl Mater Interfaces ; 10(38): 32078-32085, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30028585

ABSTRACT

Greigite and other iron sulfides are potential, cheap, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER), yet little is known about the underlying surface chemistry. Structural and chemical changes to a greigite (Fe3S4)-modified electrode were determined at -0.6 V versus standard hydrogen electrode (SHE) at pH 7, under conditions of the HER. In situ X-ray absorption spectroscopy was employed at the Fe K-edge to show that iron-sulfur linkages were replaced by iron-oxygen units under these conditions. The resulting material was determined as 60% greigite and 40% iron hydroxide (goethite) with a proposed core-shell structure. A large increase in pH at the electrode surface (to pH 12) is caused by the generation of OH- as a product of the HER. Under these conditions, iron sulfide materials are thermodynamically unstable with respect to the hydroxide. In situ infrared spectroscopy of the solution near the electrode interface confirmed changes in the phosphate ion speciation consistent with a change in pH from 7 to 12 when -0.6 V versus SHE is applied. Saturation of the solution with CO2 resulted in the inhibition of the hydroxide formation, potentially due to surface adsorption of HCO3-. This study shows that the true nature of the greigite electrode under conditions of the HER is a core-shell greigite-hydroxide material and emphasizes the importance of in situ investigation of the catalyst under operation to develop true and accurate mechanistic models.

5.
ChemSusChem ; 10(15): 3049-3055, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28644559

ABSTRACT

Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH3 CN)4 ]PF6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed.


Subject(s)
Azulenes/chemistry , Cycloheptanes/chemistry , Lab-On-A-Chip Devices , Photochemical Processes , Solar Energy
6.
Nanoscale ; 8(21): 11067-75, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27173962

ABSTRACT

Square-planar nickel bis(dithiocarbamate) complexes, [Ni(S2CNR2)2], have been prepared and utilised as single source precursors to nanoparticulate nickel sulfides. While they are stable in the solid-state to around 300 °C, heating in oleylamine at 230 °C, 5 mM solutions afford pure α-NiS, where the outcome is independent of the substituents. DFT calculations show an electronic effect rather than steric hindrance influences the resulting particle size. Decomposition of the iso-butyl derivative, [Ni(S2CN(i)Bu2)2], has been studied in detail. There is a temperature-dependence of the phase of the nickel sulfide formed. At low temperatures (150 °C), pure α-NiS is formed. Upon raising the temperature, increasing amounts of ß-NiS are produced and at 280 °C this is formed in pure form. A range of concentrations (from 5-50 mM) was also investigated at 180 °C and while in all cases pure α-NiS was formed, particle sizes varied significantly. Thus at low concentrations average particle sizes were ca. 100 nm, but at higher concentrations they increased to ca. 150 nm. The addition of two equivalents of tetra-iso-butyl thiuram disulfide, ((i)Bu2NCS2)2, to the decomposition mixture was found to influence the material formed. At 230 °C and above, α-NiS was generated, in contrast to the results found without added thiuram disulfide, suggesting that addition of ((i)Bu2NCS2)2 stabilises the metastable α-NiS phase. At low temperatures (150-180 °C) and concentrations (5 mM), mixtures of α-NiS and Ni3S4, result. A growing proportion of Ni3S4 is noted upon increasing precursor concentration to 10 mM. At 20 mM a metastable phase of nickel sulfide, NiS2 is formed and as the concentration is increased, α-NiS appears alongside NiS2. Reasons for these variations are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...