Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276456

ABSTRACT

This study presents research results concerning the vacuum carburizing of four steel grades, specifically conforming to European standards 1.7243, 1.6587, 1.5920, and 1.3532. The experimental specimens exhibited variations primarily in nickel content, ranging from 0 to approximately 3.8 wt. %. As a comparative reference, gas carburizing was also conducted on the 1.3532 grade, which had the highest nickel content. Comprehensive structural analysis was carried out on the resultant carburized layers using a variety of techniques, such as optical and electron scanning, transmission microscopy, and X-ray diffraction. Additionally, mechanical properties such as hardness and fatigue strength were assessed. Fatigue strength evaluation was performed on un-notched samples having a circular cross-section with a diameter of 12 mm. Testing was executed via a three-point bending setup subjected to sinusoidally varying stresses ranging from 0 to maximum stress levels. The carburized layers produced had effective thicknesses from approximately 0.8 to 1.4 mm, surface hardness levels in the range of 600 to 700 HV, and estimated retained austenite contents from 10 to 20 vol%. The observed fatigue strength values for the layers varied within the range from 1000 to 1350 MPa. It was found that changing the processing method from gas carburizing, which induced internal oxidation phenomena, to vacuum carburizing improved the fatigue properties to a greater extent than increasing the nickel content of the steel.

2.
Materials (Basel) ; 14(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201474

ABSTRACT

High plasticity of bioabsorbable stents, either cardiac or ureteral, is of great importance in terms of implants' fabrication and positioning. Zn-Cu constitutes a promising group of materials in terms of feasible deformation since the superplastic effect has been observed in them, yet its origin remains poorly understood. Therefore, it is crucial to inspect the microstructural evolution of processed material to gain an insight into the mechanisms leading to such an extraordinary property. Within the present study, cold-rolled Zn-Cu alloys, i.e., Zn with addition of 1 wt.% and 5 wt.% of Cu, have been extensively investigated using scanning electron microscopy as well as transmission electron microscopy, so as to find out the possible explanation of superior plasticity of the Zn-Cu alloys. It has been stated that the continuous dynamic recrystallization has a tremendous impact on superior plasticity reported for Zn-1Cu alloy processed by rolling to 90% of reduction rate. The effect might be supported by static recrystallization, provoking grain growth and thereby yielding non-homogeneous microstructures. Such heterogeneous microstructure enables better formability since it increases the mean free path for dislocation movement.

3.
Materials (Basel) ; 14(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206961

ABSTRACT

The aim of this study was to analyze the crystallization of the Mg72Zn24Ca4 metallic glass alloy. The crystallization process of metallic glass Mg72Zn24Ca4 was investigated by means of the differential scanning calorimetry. The glass-forming ability and crystallization are both strongly dependent on the heating rate. The crystallization kinetics, during the isothermal annealing, were modelled by the Johnson-Mehl-Avrami equation. Avrami exponents were from 2.7 to 3.51, which indicates diffusion-controlled grain growth. Local exponents of the Johnson-Mehl-Avrami equation were also calculated. In addition, the Mg phase-being the isothermal crystallization product-was found, and the diagram of the time-temperature phase transformation was developed. This diagram enables the reading of the start and end times of the crystallization process, occurring in amorphous ribbons of the Mg72Zn24Ca4 alloy on the isothermal annealing temperature. The research showed high stability of the amorphous structure of Mg72Zn24Ca4 alloy at human body temperature.

4.
Materials (Basel) ; 14(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067916

ABSTRACT

The effect of ternary alloying elements (Mo and Ta) on the mechanical and superelastic properties of binary Ti-14Nb alloy fabricated by the mechanical alloying and spark plasma sintering was investigated. The materials were prepared in two ways: (i) by substituting Nb in base Ti-14Nb alloy by 2 at.% of the ternary addition, giving the following compositions: Ti-8Nb-2Mo and Ti-12Nb-2Ta and (ii) by adding 2 at.% of the ternary element to the base alloy. The microstructures of the materials consisted of the equiaxed ß-grains and fine precipitations of TiC. The substitution of Nb by both Mo and Ta did not significantly affect the mechanical properties of the base Ti-14Nb alloy, however, their addition resulted in a decrease of yield strength and increase of plasticity. This was associated with the occurrence of the {332} <113> twinning that was found during the in-situ observations. The elevated concentration of interstitial elements (oxygen and carbon) lead to the occurrence of stress-induced martensitic transformation and twinning mechanisms at lower concentration of ß-stabilizers in comparison to the conventionally fabricated materials. The substitution of Nb by Mo, and Ta caused the slight improvement of the superelastic properties of the base Ti-14Nb alloy, whereas their addition deteriorated the superelasticity.

5.
Materials (Basel) ; 14(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557070

ABSTRACT

This article presents the results of the metal deposition process using additive materials in the form of filler wire and metal powder. An important problem in wire deposition using a CO2 laser was overcome by using a combination of the abovementioned methods. The deposition of a multicomponent alloy-Inconel 625-on a basic substrate such as structural steel is presented. The authors propose a new approach for stopping carbon and iron diffusion from the substrate, by using the Semi-Hybrid Deposition Method (S-HDM) developed by team members. The proposed semi-hybrid method was compared with alternative wire and powder deposition using laser beam. Differences of S-HDM and classic wire deposition and powder deposition methods are presented using metallographic analysis, within optic and electron microscopy. Significant differences in the obtained results reveal advantages of the developed method compared to traditional deposition methods. A comparison of the aforementioned methods performed using nickel based super alloy Inconel 625 deposited on low carbon steel substrate is presented. An alternative prototyping approach for an advanced high alloy materials deposition using CO2 laser, without the requirement of using the same substrate was presented in this article. This study confirmed the established assumption of reducing selected components diffusion from a substrate via buffer layer. Results of metallographic analysis confirm the advantages and application potential of using the new semi-hybrid method for prototyping high alloy materials on low alloy structural steel substrate.

6.
Materials (Basel) ; 13(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182439

ABSTRACT

The effect of using two different deposition systems on the microstructure and mechanical properties was studied in this paper. For this purpose, laser-engineered net shaping (LENS) and high-power CO2 laser deposition processes were applied to fabricate Inconel 625 samples. The microstructure of the Inconel 625 produced by both additive techniques was characterized using light microscopy (LM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The mechanical properties were characterized by tensile tests and microhardness measurements. High-power laser application resulted in a strong <100> build texture, while, at low powers, the {011} <100> Goss component increased. Both types of deposited materials showed dendritic microstructures with Ti-, Mo-, and Nb-rich zones at the cell boundaries, where numerous precipitates (Nb2C, NbC, titanium carbides, Nb3Ni, and NbNiCr) were also observed. It was also noted that both variants were characterized by the same slope with a proportional length, but the Inconel 625 fabricated via LENS showed a higher average yield strength (YS; 524 MPa vs. 472 MPa) and ultimate tensile strength (UTS; 944 MPa vs. 868 MPa) and lower elongation (35% vs. 42%) than samples obtained with the high-power CO2 laser deposition process.

7.
Materials (Basel) ; 13(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784911

ABSTRACT

The aim of this work was to monitor the corrosion rate of the Mg72Zn24Ca4 and Zn87Mg9Ca4 alloys. The purity of the alloying elements was 99.9%. The melt process was carried out in an induction furnace. The melting process took place under the cover of an inert gas (argon). The copper form was flooded by liquid alloy. Then, in order to obtain ribbons, the cast alloy, in rod shape, was re-melted on the melt spinning machine. The corrosion resistance of both alloys has been determined on the basis of the following experiments: measurements of the evolution of OCP (open circuit potential), LSV (linear sweep voltamperometry) and EIS (electrochemical impedance spectroscopy). All corrosion tests were carried out in Ringer's solution at 37 °C and pH 7.2. The corrosion tests have revealed that the zinc alloy, Zn87Mg9Ca4, exhibits significantly higher corrosion resistance in the Ringer solution compared to the magnesium alloy, Mg72Zn24Ca4. Moreover, it has been shown that the cathodic reaction proceeds faster on the surface of ribbons. EIS measurements show that the dissolution of Mg alloy proceeds with two steps: transfer of Mg2+ ions to the Ringer solution and then the formation of the corrosion products, which are deposited on the surface of magnesium alloy. It has been revealed, too, that for both bulk materials, diffusion of chloride ions through the corrosion product's layer takes place.

8.
Materials (Basel) ; 13(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586058

ABSTRACT

The effect of Nb content on microstructure, mechanical properties and superelasticity was investigated for a series of Ti-xNb alloys, fabricated by the laser engineered net shaping method, using elemental Ti and Nb powders. The microstructure of as-deposited materials consisted of columnar ß-phase grains, elongated in the built direction. However, due to the presence of undissolved Nb particles during the deposition process, an additional heat treatment was necessary. The observed changes in mechanical properties were explained in relation to the phase constituents and deformation mechanisms. Due to the elevated oxygen content in the investigated materials (2 at.%), the specific deformation mechanisms were observed at lower Nb content in comparison to the conventionally fabricated materials. This made it possible to conclude that oxygen increases the stability of the ß phase in ß-Ti alloys. For the first time, superelasticity was observed in Ti-Nb-based alloys fabricated by the additive manufacturing method. The highest recoverable strain of 3% was observed in Ti-19Nb alloy as a result of high elasticity and reverse martensitic transformation stress-induced during the loading.

9.
Sci Rep ; 7(1): 2209, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28526830

ABSTRACT

Multi-principle element alloys have enormous potential, but their exploration suffers from the tremendously large range of configurations. In the last decade such alloys have been designed with a focus on random solid solutions. Here we apply an experimentally verified, combined thermodynamic and first-principles design strategy to reverse the traditional approach and to generate a new type of hcp Al-Hf-Sc-Ti-Zr high entropy alloy with a hitherto unique structure. A phase diagram analysis narrows down the large compositional space to a well-defined set of candidates. First-principles calculations demonstrate the energetic preference of an ordered superstructure over the competing disordered solid solutions. The chief ingredient is the Al concentration, which can be tuned to achieve a D019 ordering on the hexagonal lattice. The computationally designed D019 superstructure is experimentally confirmed by transmission electron microscopy and X-ray studies. Our scheme enables the exploration of a new class of high entropy alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...